Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-24T09:39:37.652Z Has data issue: false hasContentIssue false

Three-dimensional morphological variability of Recent rhynchonellide brachiopod crura

Published online by Cambridge University Press:  08 April 2016

Holly A. Schreiber
Affiliation:
Department of Earth and Planetary Sciences, University of California, Davis, One Shields Avenue, Davis, California 95616, U.S.A. E-mail: haschultz@ucdavis.edu; sjcarlson@ucdavis.edu
Peter D. Roopnarine
Affiliation:
Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California 94118, U.S.A. E-mail: proopnarine@calacademy.org
Sandra J. Carlson
Affiliation:
Department of Earth and Planetary Sciences, University of California, Davis, One Shields Avenue, Davis, California 95616, U.S.A. E-mail: haschultz@ucdavis.edu; sjcarlson@ucdavis.edu

Abstract

Crura, the calcareous support structures of the lophophore in rhynchonellide brachiopods, have historically been used to justify higher-level rhynchonellide classification and reveal major evolutionary lineages within rhynchonellides. Seventeen crural types have been described and categorized into four groups based on variation in overall structure and cross-sectional shape, but not evaluated in a quantitative or comprehensive manner. Heterochrony has been hypothesized to play a role in the evolutionary transitions among some types, but the structural, developmental, and phylogenetic context for testing these hypotheses has not yet been established. In this study, we use three-dimensional geometric morphometric techniques to quantify morphological disparity among all six crural morphs in Recent adult rhynchonellides, with the goal of delineating more objective criteria for identifying and comparing crural morphs, ultimately to test hypotheses explaining morphological transformations in ontogeny and phylogeny. We imaged the crura of seven Recent rhynchonellide species, using X-ray computed microtomography. We used landmarks and semi-landmarks to define the dimensions and curvature of the crura and the surrounding hinge area. Procrustes-standardized landmark coordinates were analyzed using a principal component analysis to test the discreteness of the individual crural morphs and named groups of morphs, and to identify features that vary most among the crural configurations.

Our results demonstrate that microCT imaging techniques provide novel ways to investigate the morphology of small features that may be otherwise impossible to quantify using more conventional imaging techniques. Although we predicted overlap among crural morphs in the 3-D shape space, the principal component analyses suggest that five of the six crural morphs differ distinctly from one another. Some but not all previously designated crural groups appear to exhibit morphological cohesion. This study establishes a quantitative morphological foundation necessary to begin an investigation of the phylogenetic significance of ontogenetic changes in crura, which will allow hypotheses of heterochrony to be tested.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abel, R. L., Laurini, C. R., and Richter, M. 2012. A palaeobiologist's guide to “virtual” micro-CT preparation. Palaeontologia Electronica 15 (2). palaeo-electronica.org/content/issue-2-2012-technical-articles/233-micro-ct-workflow.Google Scholar
Ager, D. V. 1962. A monograph of the British Liassic Rhynchonellidae, Part III. Palaeontographical Society of London, Monograph 116 (498):85136.Google Scholar
Ager, D. V. 1965. Mesozoic and Cenozoic Rhynchonellacea. Pp. H597H625inWilliams, A.et al. Brachiopoda. Part H ofMoore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America, New York, and University of Kansas Press, Lawrence.Google Scholar
Angiolini, L., Barberini, V., Fusi, N., and Villa, A. 2010. The internal morphology of fossil brachiopods under x-ray computed tomography (CT). In Program and Abstracts, Sixth International Brachiopod Congress, 1–5 February 2010, Melbourne, Australia. Geological Society of Australia Abstracts 95:7.Google Scholar
Baranov, V. V. 1980. Morphology of crura and new rhynchonellid taxa. Paleontologicheskii Zhurnal 4:7590.Google Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data. Cambridge University Press, Cambridge.Google Scholar
Bookstein, F. L. 1997. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Image Analysis 1:225243.Google Scholar
Brunton, C. H. C., Alvarez, F., and MacKinnon, D. I. 1996. Morphological terms used to describe the cardinalia of articulate brachiopods: homologies and recommendations. Historical Biology 11:941.Google Scholar
Carlson, S. J. 1989. The articulate brachiopod hinge mechanism: morphological and functional variation. Paleobiology 15:364386.Google Scholar
Carlson, S. J. 1993. Phylogeny and evolution of ‘pentameride' brachiopods. Palaeontology 36:807837.Google Scholar
Carlson, S. J. 1995. Phylogenetic relationships among extant brachiopods. Cladistics 11:131197.Google Scholar
Carlson, S. J. 2007. Recent research on brachiopod evolution. Pp. H2878H2900in Williams et al. 2007.Google Scholar
Carlson, S. J. 2012. Are phylogenetic nomenclature and invertebrate paleontology friends or foes? Geological Society of America Abstracts with Programs 44 (7):34.Google Scholar
Carlson, S. J., and Leighton, L. R. 2001. The phylogeny and classification of Rhynchonelliformea. InCarlson, S. J. and Sandy, M. R., eds. Brachiopods ancient and modern: a tribute to G. Arthur Cooper. Paleontological Society Papers 7:2751.Google Scholar
Carlson, S. J., and Cohen, B. L.In press. Neoarticulata. inde Queiroz, K., Cantino, P. D., and Gauthier, J. A., eds. Phylonyms: a companion to the PhyloCode. University of California Press, Berkeley and Los Angeles.Google Scholar
Carlson, S. J., Boucot, A. J., Jia-Yu, R., Blodgett, R. B. 2002. Pentamerida. Pp. H922H1027inWilliams, A.et al. Brachiopoda 4 (revised), Rhynchonelliformea (part). Part H ofKaesler, R. L., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas Press, Lawrence.Google Scholar
Cohen, B. L. 2001a. Brachiopod molecular phylogeny advances. InBrunton, C. H. C., Cocks, L. R. M., and Long, S., eds. Brachiopods past and present. Proceedings of the Millennium Brachiopod Congress, 2000. Systematics Association Special Volume 63:121128. Taylor and Francis. London.Google Scholar
Cohen, B. L. 2001b. Genetics and molecular systematics of brachiopods. InCarlson, S. J. and Sandy, M. R., eds. Brachiopods ancient and modern: a tribute to G. Arthur Cooper. Paleontological Society Papers 7:5367.CrossRefGoogle Scholar
Cohen, B. L. 2007. The brachiopod genome. Pp. H2356H2372in Williams et al. 2007.Google Scholar
Cohen, B. L., and Bitner, M. A. 2013. Molecular phylogeny of rhynchonellide articulate brachiopods (Brachiopoda, Rhynchonellida). Journal of Paleontology 87:211216.Google Scholar
Cohen, B. L., and Gawthrop, A. B. 1997. The brachiopod genome. Pp. H189H211inWilliams, A.et al. Brachiopoda 1 (revised), Introduction. Part H ofKaesler, R. L., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Cohen, B. L., and Weydmann, A. 2005. Molecular evidence that phoronids are a subtaxon of brachiopods (Brachiopoda: Phoronata) and that genetic divergence of metazoan phyla began long before the Early Cambrian. Organisms, Diversity and Evolution 5:253273.Google Scholar
Cooper, G. A. 1959. Genera of Tertiary and recent rhynchonelloid brachiopods. Smithsonian Miscellaneous Collections 139:190.Google Scholar
Dagys, A. S. 1968. Iurskie i rannemelovye brakhiopody severa Sibiri [Jurassic and Early Cretaceous brachiopods from north Siberia]. Trudy Instituta Geologii I Geofiziki 41:1167.Google Scholar
Elliott, J. C., and Dover, S. D. 1982. X-ray microtomography. Journal of Microscopy 126:211213.Google Scholar
Emig, C. C. 1992. Functional disposition of the lophophore in living Brachiopoda. Lethaia 25:291302.Google Scholar
Flannery, B. P., Deckman, H. W., Roberge, W. G., and D'Amico, K. L. 1987. Three-dimensional x-ray microtomography. Science 237:14391444.CrossRefGoogle ScholarPubMed
Gering, D, Nabavi, A., Kikinis, R., Grimson, W., Hata, N., Everett, P., Jolesz, F., and Wells, W. 1999. An integrated visualization system for surgical planning and guidance using image fusion and interventional imaging. Second International Conference on Medical Image Computing and Computer Assisted Intervention, Proceedings, pp. 809819.Google Scholar
Görög, Á., Szinger, B., Tóth, E., and Viszkok, J. 2012. Methodology of the micro-computer tomography on foraminifera. Palaeontologia Electronica 15 (1). palaeo-electronica.org/content/issue-1-2012-technical-articles/121-methodology-of-ct-on-foramsGoogle Scholar
Gower, J. C. 1975. Generalized Procrustes analysis. Psychometrika 40:3351.Google Scholar
Gunz, P. 2001. Using semi-landmarks in three dimensions to model human neurocranial shape. Master's thesis. University of Vienna, Vienna.Google Scholar
Gunz, P. 2005. Statistical and geometric reconstruction of hominid crania: reconstructing australopithecine ontogeny. Ph.D. thesis. University of Vienna, Vienna.Google Scholar
Gunz, P., Mitteröcker, P., and Bookstein, F. L. 2005. Semi-landmarks in three dimensions. Pp. 7398inSlice, D. E., ed. Modern morphometrics in physical anthropology. Kluwer Academic/Plenum, New York.Google Scholar
Hammer, Ø., Hammer, D. A. T., and Ryan, P. D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologica Electronica 4 (1):9.Google Scholar
Jaanusson, V. J. 1971. Evolution of the brachiopod hinge. Smithsonian Contributions to Paleobiology 3:3346.Google Scholar
James, M., Ansell, A. D., Collins, M. J., Curry, G. B., Peck, L. S., and Rhodes, M. C. 1992. Biology of living brachiopods. Advances in Marine Biology 28:175387.Google Scholar
Ketcham, R. A., and Carlson, W. D. 2001. Acquisition, optimization and interpretation of x-ray computed tomographic imagery: applications to the geosciences. Computers and Geosciences 27:381400.Google Scholar
Kuhn, O. 1949. Lehrbuch der Paläozoologie. E. Schweizerbart, Stuttgart.Google Scholar
LaBarbera, M. 1977. Brachiopod orientation to water movement. 1. Theory, laboratory behavior, and field orientations. Paleobiology 3:270287.Google Scholar
LaBarbera, M. 1978. Brachiopod orientation to water movement, functional morphology. Lethaia 11:6779.CrossRefGoogle Scholar
LaBarbera, M. 1981. Water flow patterns in and around three species of articulate brachiopods. Journal of Experimental Marine Biology and Ecology 55:185206.Google Scholar
Logan, A. 2007. Geographic distribution of extant articulated brachiopods. Pp. H3083H3115in Williams et al. 2007.Google Scholar
Long, J. A., and Stricker, S. A. 1991. Brachiopoda. InGeise, A., Pearse, J. S., and Pearse, V. B., eds. Reproduction of Marine Invertebrates 6:4784.Google Scholar
Manceñido, M. O. 1998. Revaluación de los tipos de crura de los Rhynchonellida post-paleozoicos (Brachiopoda). VII Congreso Argentino de Paleontología y Biostratigrafía, Bahía Blance, Argentina. Resúmenes, p. 46.Google Scholar
Manceñido, M. O. 2000. Crural types among Post-Paleozoic Rhynchonellida (Brachiopoda). The Millennium Brachiopod Congress, 1014 July 2000, London, Abstracts, p. 57. Natural History Museum, London.Google Scholar
Manceñido, M. O., and Motchurova-Dekova, N. 2010. A review of crural types, their relationships to shell microstructure, and significance among post-Paleozoic Rhynchonellida. InAlvarez, F. and Curry, G., eds. Evolution and development of the brachiopod shell. Special Papers in Palaeontology 84:203204.Google Scholar
Manceñido, M. O., and Owen, E. F. 2001. Post-Paleozoic Rhynchonellida (Brachiopoda): classification and evolutionary background. InCocks, L. R. M., Brunton, C. H. C., and Long, S. L., eds. Brachiopods past and present. Proceedings of the Millennium Brachiopod Congress, 2000. Systematics Association Special Volume 63:189200. Taylor and Francis, London.Google Scholar
Manceñido, M. O., Owen, E. F., and Sun, D.-L. 2007. Post-Paleozoic Rhynchonellida. Pp. H27272741in Williams et al. 2007.Google Scholar
Mitteröcker, P., and Gunz, P. 2002. Semi-landmarks on curves and surfaces in three dimensions. American Journal of Physical Anthropology Suppl. 34:114115.Google Scholar
Mitteröcker, P., 2009. Advances in geometric morphometrics. Evolutionary Biology 36:235247.Google Scholar
Monnet, C., Zollikofer, C., Bucher, H., and Goudemand, N. 2009. Three-dimensional morphometric ontogeny of mollusc shells by micro-computed tomography and geometric analysis. Palaeontologia Electronica 12 (3). http://palaeo-electronica.org/2009_3/183/index.html.Google Scholar
Motchurova-Dekova, N. and Harper, D. A. T. 2010. A non-destructive method to study the brachiopod shell interior: preliminary report. Program and Abstracts, 6th International Brachiopod Congress, 1–5 February 2010, Melbourne, Australia; Geological Society of Australia Abstracts, 95:8182.Google Scholar
Motchurova-Dekova, N., Saito, M., and Endo, K. 2002. The Recent rhynchonellide brachiopod Parasphenarina cavernicola gen. et sp. nov. from the submarine caves of Okinawa, Japan. Paleontological Research 6:299319.Google Scholar
Muir-Wood, H. M. 1934. On the internal structure of some Mesozoic Brachiopoda. Philosophical Transactions of the Royal Society of London B 223:511567.Google Scholar
O'Higgins, P., and Jones, N. 1998. Facial growth in Cercocebus torquatus: an application of three-dimensional geometric morphometric techniques to the study of morphological variation. Journal of Anatomy 193:251272.Google Scholar
Pakhnevich, A. V. 2010. Micro-CT investigations of Recent and fossil brachiopods. In Program and Abstracts, Sixth International Brachiopod Congress, 1–5 February 2010, Melbourne, Australia. Geological Society of Australia Abstracts 95:85.Google Scholar
Peck, R. L., Bailey, J. B., Heck, R. J., an d Scaiff, N. T. 2009. X-ray CT scan as an aid to identification and description of a new bivalve species (Mollusca) from the Mississippian Bluefield formation, southeastern West Virginia. Journal of Paleontology 83:954961.Google Scholar
Pieper, S., Halle, M., an d Kikinis, R. 2004. 3D SLICER. Proceedings of the First IEEE International Symposium on Biomedical Imaging: From Nano to Macro 1:632635.Google Scholar
Pieper, S., Lorensen, B., Schroeder, W., an d Kikinis, R. 2006. The NA-MIC Kit: ITK, VTK, pipelines, grids and 3D Slicer as an open platform for the medical image computing community. Proceedings of the Third IEEE International Symposium on Biomedical Imaging: From Nano to Macro 1:698701.Google Scholar
Rohlf, F. J., and Slice, D. E. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39:4059.Google Scholar
Rothpletz, A. 1886. Geologisch-palaeontologische monographie der bilser Alpen mit besonderer Berucksichtigung der Brachiopoden-systematik. Palaeontographica 33:1180.Google Scholar
Rudwick, M. J. S. 1970. Living and fossils brachiopods. Hutchinson, London.Google Scholar
Savage, N. M. 1996. Classification of Paleozoic rhynchonellide brachiopods. Pp. 249260inCopper, P. and Jin, J., eds. Brachiopods. Proceedings of the Third International Brachiopod Congress, 1995. A. A. Balkema, Rotterdam.Google Scholar
Savage, N. M. 2007. Rhynchonellida (part). Pp. H2703H2716in Williams et al. 2007.Google Scholar
Savage, N. M, Manceñido, M. O., Owen, E. F., Carlson, S. J., Grant, R. E., Dagys, A. S., and Dong-Li, S. 2002. Rhynchonellida. Pp. H1027H1040inWilliams, A.et al. Brachiopoda 4 (revised), Rhynchonelliformea (part). Part H ofKaesler, R. L., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, and University of Kansas Press, Lawrence.Google Scholar
Schreiber, H. A., Bitner, M. A., and Carlson, S. J. 2013. Morphological analysis of phylogenetic relationships among extant rhynchonellide brachiopods. Journal of Paleontology 87:550569.Google Scholar
Shiino, Y., and Kuwazuru, O. 2010. Functional adaptation of spiriferide brachiopod morphology. Journal of Evolutionary Biology 23:15471557.Google Scholar
Shiino, Y., Kuwazur, O., and Yoshikawa, N. 2009. Computational fluid dynamics simulations on a Devonian spiriferid Paraspirifer bownockeri (Brachiopoda): generating mechanism of passive feeding flows. Journal of Theoretical Biology 259:132141.Google Scholar
van Dam, J. A., Fortuny, J., and van Ruijven, L. J. 2011. MicroCT-scans of fossil micromammal teeth: re-defining hypsodonty and enamel proportion using true volume. Palaeogeography, Palaeoclimatology, Palaeoecology 311:103110.Google Scholar
Westbroek, P. 1968. Morphological observations with systematic implications on some Paleozoic Rhynchonellida from Europe, with special emphasis on the Uncinulidae. Leidse Geologische Mededelingen 41:182.Google Scholar
Wiley, D. F., Amenta, N., Alcantara, D. A., Ghosh, D., Kil, Y. J, Delson, E., Harcourt-Smith, W., Rohlf, F. J., St. John, K., and Hamann, B. 2005 (2007 update). Evolutionary morphing. InProceedings of the 16th IEEE Visualization Conference pp. 431438.Google Scholar
Williams, A., and Carlson, S. J. 2007. Affinities of brachiopods and trends in their evolution. Pp. H2823H2877in Williams et al. 2007.Google Scholar
Williams, A., Carlson, S. J., Brunton, C. H. C., Holmer, L. E., and Popov, L. E. 1996. A supra-ordinal classification of the Brachiopoda. Philosophical Transactions of the Royal Society of London B 351:11711193.Google Scholar
Williams, A., Brunton, C. H. C, and MacKinnon, D. I. 1997. Morphology Pp. H321H440inWilliams, A.et al. Brachiopoda 1 (revised), Introduction. Part H ofKaesler, R. L., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Williams, A., Carlson, S. J., an d Brunton, C. H. C. 2000a. Brachiopod classification Pp. H1H29inWilliams, et al. 2000 c.Google Scholar
Williams, A., 2000b. Rhynchonelliformea. Pp. H193inWilliams, A.et al. 2000 c.Google Scholar
Williams, A., et al. 2000c. Brachiopoda 2 (revised), Linguliformea, Craniiformea, and Rhynchonelliformea (part). Part H ofKaesler, R. L., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas Press, Lawrence.Google Scholar
Williams, A., et al. 2007. Brachiopoda 6 (revised), Supplement. Part H ofSelden, P. A., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, and University of Kansas, Lawrence.Google Scholar
Wisniewska, M. 1932. Les Rhynchonellides du Jurassique sup. de Pologne [Rhynchonellidae Gornej Jury w Polsce]. Palaeontologia Polonica 2 (1):viii + 171.Google Scholar
Zelditch, M. R., Swiderski, D. L., Sheets, H. D., and Fink, W. L., eds. 2004. Geometric morphometrics for biologists: a primer. Elsevier Press, San Diego.Google Scholar