Skip to main content Accessibility help
×
Home

Testing for escalation in Lower Mississippian camerate crinoids

  • Jeffrey R. Thompson (a1) and William I. Ausich (a1)

Abstract

Crinoids were relatively unaffected by the end-Devonian Hangenberg mass extinction event. Major clades of Devonian durophagous fishes suffered significant extinctions, however, and the dominant surviving clades were biting or nipping predators. In part as a response to the Hangenberg event, early Mississippian crinoids underwent an adaptive radiation, while fish clades with a shell-crushing durophagous strategy diversified. Durophagous predators are inferred to have been more effective predators on camerate crinoids; and it is hypothesized, following the predictions of escalation, that through the early Mississippian, camerate crinoids evolved more effective anti-predatory strategies in response. We test this hypothesis of escalation by examining the changes in spinosity and plate convexity among camerate crinoids throughout this interval. A new method was formulated to test for an increase in convexity of the tegmen plates. Traits in Agaricocrinus, Aorocrinus, and Dorycrinus (Family Coelocrinidae) were tested for congruence to the escalation hypothesis, and results were mixed. Convexity of tegmen plates in Agaricocrinus, spine length/calyx diameter in Aorocrinus, calyx size in Aorocrinus, central spine length in Dorycrinus, and spine width in Dorycrinus did not have size increase trends supporting escalation. Rather than an increase in convexity, the variance of convexity in Agaricocrinus tegmen plates narrowed, which could reflect an optimum. Alternatively, morphological change consistent with the escalation hypothesis occurred in calyx size of Agaricocrinus and in lateral spine length and calyx size in Dorycrinus. Furthermore, central and lateral spine length, parameters of the spine width, and size trends support escalation when Aorocrinus and Dorycrinus are treated as a lineage. Thus, inferred escalation acted on traits differently within a single lineage and was relevant for both speciation and the diversification of a new genus.

Copyright

References

Hide All
Alroy, J. 2000. Understanding the dynamics of trends within evolving lineages. Paleobiology 26:319329.
Ausich, W. I. 1997. Regional encrinites: a vanished lithofacies. Pp. 509519in C. E. Brett and G. C. Baird, eds. Paleontological events: stratigraphic, ecological and evolutionary implications. Columbia University Press, New York.
Ausich, W. I., and Kammer, T. W.. 1991. Systematic revisions to Aorocrinus, Dorycrinus, Macrocrinus, Paradichocrinus, Strotocrinus, and Uperocrinus: Mississippian camerate crinoids (Echinodermata) from the stratotype region. Journal of Paleontology 65:936944.
Ausich, W. I., and Kammer, T. W.. 2006. Stratigraphical and geographical distribution of Mississippian (Lower Carboniferous) Crinoidea from England and Wales. Proceedings of the Yorkshire Geological Society 56:91109.
Ausich, W. I., and Kammer, T. W.. 2013. Mississippian crinoid biodiversity, biogeography and macroevolution. Palaeontology 56:727740.
Baumiller, T. K. 1990. Non-predatory drilling of Mississippian crinoids by platyceratid gastropods. Palaeontology 33:743748.
Baumiller, T. K. 2002. Multi-snail infestation of Devonian crinoids and the nature of platyceratid-crinoid interactions. Acta Palaeontologica Polonica 47:133139.
Baumiller, T. K., and Gahn, F. J.. 2002. Fossil record of parasitism on marine invertebrates with special emphasis on the platyceratid-crinoid interaction. Pp. 195–209 in Kowalewski and Kelley 2002.
Baumiller, T. K., and Gahn, F. J.. 2004. Testing predator-driven evolution with Paleozoic crinoid arm regeneration. Science 305:14531455. doi: 10.1126/science.1101009.
Baumiller, T. K., and Gahn, F. J.. 2012. Reconstructing predation pressure on crinoids: estimating arm-loss rates from regenerating arms. Paleobiology 39:4051.
Baumiller, T. K., and Messing, C. G.. 2007. Stalked crinoid locomotion, and its ecological and evolutionary implications. Palaeontologia Electronica 10:10.
Bowsher, A. L. 1955. Origin and adaptation of platyceratid gastropods. University of Kansas Paleontological Contributions, Mollusca 5:111.
Brett, C. E. 2003. Durophagous predation in Paleozoic marine benthic assemblages. Pp. 401432in P. H. Kelley, M. Kowalewski, and T. A. Hansen, eds. Predator-prey interactions in the fossil record. Plenum/Kluwer Academic, New York.
Brett, C. E., and Walker, S. E.. 2002. Predators and predation in Paleozoic marine environments. Pp. 93–118 in Kowalewski and Kelley 2002.
Brodie, E. D. III, and Brodie, E. D. Jr. 1999. Predator-prey arms races. Bioscience 49:557568.
Campbell, D. T. 1974. “Downward causation” in hierarchically organized biological systems. Pp. 179186in F. J. Ayala and T. Dobzhansky, eds. Studies in the philosophy of biology. University of California Press, Berkeley.
Dietl, G. P. 2003. The escalation hypothesis: one long argument. Palaios 18:8386.
Dietl, G. P., and Kelley, P. H.. 2002. The fossil record of predator-prey arms races: coevolution and escalation hypotheses. Pp. 353–374 in Kowalewski and Kelley 2002.
Eldredge, N. 1996. Hierarchies in macroevolution. Pp. 4261in J. W. Valentine, D. Jablonski, D. H. Erwin, and J. H. Lipps, eds. Evolutionary paleobiology. University of Chicago Press, Chicago.
Erwin, D. H. 2000. Macroevolution is more than repeated rounds of microevolution. Evolution and Development 2:7884.
Erwin, D. H. 2010. Microevolution and macroevolution are not governed by the same processes. Pp. 180193in F. J. Ayala and R. Arp, eds. Contemporary debates in philosophy of biology. Wiley-Blackwell, Chichester, U.K.
Gahn, F. J., and Baumiller, T. K.. 2003. Infestation of Middle Devonian (Givetian) camerate crinoids by platyceratid gastropods and its implications for the nature of their biotic interaction. Lethaia 36:7182.
Gahn, F. J., and Baumiller, T. K.. 2005. Arm regeneration in Mississippian crinoids: evidence of intense predation pressure in the Paleozoic? Paleobiology 31:151164.
Gahn, F. J., and Baumiller, T. K.. 2010. Evolutionary History of Regeneration in Crinoids (Echinodermata). Integrative and Comparative Biology 50:514514.
Gahn, F. J., Fabian, A., and Baumiller, T. K.. 2003. Additional evidence for the drilling behavior of Paleozoic gastropods. Acta Palaeontologica Polonica 48:156156.
Gould, S. J. 1985. The paradox of the first tier: an agenda for paleobiology. Paleobiology 11:212.
Gradstein, F. M., Ogg, J. G., and Smith, A. G., eds. 2004. A geologic time scale 2004. Cambridge University Press, Cambridge.
Hattin, D. E. 1958. Regeneration in a Pennsylvanian crinoid spine. Journal of Paleontology 32:701702.
Hinde, G. J. 1885. Description of a new species of crinoids with articulating spines. Annals and Magazine of Natural History 15:157173.
Hlavin, W. J. 1990. Arthrodire-Ctenacanth shark. Pp. 192195in A. J. Boucot, ed. Evolutionary paleobiology of behavior and coevolution. Elsevier, Amsterdam.
Huntley, J. W., and Kowalewski, M.. 2007. Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proceedings of the National Academy of Sciences USA 104:15,00615,010.
Johnsen, S. A. L., Ahmed, M., and Leighton, L. R.. 2013. The effect of spines of a Devonian productide brachiopod on durophagous predation. Palaeogeography, Palaeoclimatology, Palaeoecology 375:3037.
Kammer, T. W. 1985. Aerosol filtration theory applied to Mississippian deltaic crinoids. Journal of Paleontology 59:551560.
Kammer, T. W., and Ausich, W. I.. 1987. Aerosol suspension feeding and current velocities: distributional controls for late Osagean crinoids. Paleobiology 13:379395.
Kammer, T. W., and Ausich, W. I.. 2006. The “Age of Crinoids”: a Mississippian biodiversity spike coincident with widespread carbonate ramps. Palaios 21:238248.
Kammer, T. W., Sumrall, C. D., Zamora, S., Ausich, W. I., and Deline, B.. 2013. Oral region homologies in Paleozoic crinoids and other plesiomorphic pentaradial echinoderms. PLoS ONE 8:116. [http://dx.plos.org/10.1371/journal.pone.0077989].
Kelley, P. H., and Hansen, T. A.. 1993. Evolution of the naticid gastropod predator-prey system: an evaluation of the hypothesis of escalation. Palaios 8:358375.
Kowalewski, M., and Kelley, P. H., eds. 2002. The fossil record of predation. Paleontological Society Papers 8.
Lane, N. G. 1978. Family Coelocrinidae Bather, 1899. Pp. T471T472in R. C. Moore and K. Teichert, eds. Treatise on invertebrate paleontology, Part T, Echinodermata 2, Vol. 2. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.
Lane, N. G. 1984. Predation and survival among inadunate crinoids. Paleobiology 10:453458.
Lane, N. G., and Webster, G. D.. 1966. New Permian crinoid fauna from Southern Nevada. University of California Publications in Geological Sciences 63:160.
Laudon, L. 1957. Crinoids. In H. S. Ladd, ed. Treatise on marine ecology and paleoecology, Vol. 2. Paleoecology. Geological Society of America Memoir 6:961–972.
Laudon, L. R., Parks, J. M., and Spreng, A. C.. 1952. Mississippian crinoid fauna from the Banff Formation, Sunwapta Pass, Alberta. Journal of Paleontology 26:544575.
Leighton, L. R. 2001. New example of Devonian predatory boreholes and the influence of brachiopod spines on predator success. Palaeogeography, Palaeoclimatology, Palaeoecology 165:5369.
Leighton, L. R. 2003. Morphological response of prey to drilling predation in the Middle Devonian. Palaeogeography, Palaeoclimatology, Palaeoecology 201:221234.
Lieberman, B. S. 2008. Emerging syntheses between palaeobiogeography and macroevolutionary theory. Proceedings of the Royal Society of Victoria 120:5157.
Lieberman, B. S., and Vrba, E. S.. 1995. Hierarchy theory, selection and sorting. Bioscience 45:394399.
Malzahn, E. 1968. Über neue Funde von Janassa bituminosa (Schloth.) im niederrheinischen Zechstein; ein Beitrag zur Histologie der Zähne, Haut und Lebensweise. Geologisches Jahrbuch, Beihefte 85:6785.
MathWorks, Inc. 2012. MATLAB 2012b and Curve Fitting Toolbox. Natick, Mass.
Meyer, D. L. 1985. Evolutionary implications of predation on recent comatulid crinoids from the Great Barrier Reef. Paleobiology 11:154164.
Meyer, D. L., and Ausich, W. I.. 1983. Biotic interactions among recent and among fossil crinoids. Pp. 377427in M. J. S. Tevesz and P. L. McCall, eds. Biotic interactions in Recent and fossil benthic communities. Plenum, New York.
Miller, D. J., and LaBarbera, M.. 1995. Effects of foliaceous varices on the mechanical properties of Chicoreus dilectus (Gastropoda: Muricidae). Journal of Zoology 236:151160.
Palmer, R. A. 1979. Fish predation and the evolution of gastropod shell sculpture: experimental and geographic evidence. Evolution 33:697713.
Salamon, M. A., Gorzelak, P., Niedzwiedzki, R., Trzesiok, D., and Baumiller, T. K.. 2014. Trends in shell fragmentation as evidence of mid-Paleozoic changes in marine predation. Paleobiology 40:1423.
Sallan, L. C., and Coates, M. I.. 2010. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. Proceedings of the National Academy of Sciences USA 107:1013110135.
Sallan, L. C., Kammer, T. W., Ausich, W. I., and Cook, L. A.. 2011. Persistent predator–prey dynamics revealed by mass extinction. Proceedings of the National Academy of Sciences USA 108:83358338.
Savarese, M., Dodd, R. J., and Lane, N. G.. 1997. Taphonomic and sedimentologic implications of crinoids intraskeletal porosity. Lethaia 29:141156.
Signor, P.W. III, and Brett, C. E.. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229245.
Springer, F. 1920. The Crinoidea Flexibilia (with an atlas of A. B. C. and 76 plates). Smithsonian Institution, Washington D.C.
St. John, O., and Worthen, A.. 1875. Descriptions of fossil fishes. Geological Survey of Illinois 6:245488.
Stone, H. M. I. 1998. On predator deterrence by pronounced shell ornament in epifaunal bivalves. Palaeontology 41:10511068.
Sumrall, C. D., and Waters, J. A.. 2012. Universal elemental homology in glyptocystitoids, hemicosmitoids, coronoids and blastoids: steps toward echinoderm phylogenetic reconstruction in derived Blastozoa. Journal of Paleontology 86:956972.
Syverson, V. J., and Baumiller, T. K.. 2014. Temporal trends of predation resistance in Paleozoic crinoid arm branching morphologies. Paleobiology 40:417427.
Vermeij, G. J. 1976. Interoceanic differences in vulnerability of shelled prey to crab predation. Nature 260:135136.
Vermeij, G. J. 1978. Biogeography and adaptation: patterns of marine life. Harvard University Press, Cambridge.
Vermeij, G. J. 1987. Evolution and escalation: an ecological history of life. Princeton University Press, Princeton, N.J.
Vrba, E. S. 1980. Evolution, species and fossils: how does life evolve? South African Journal of Science 76:6184.
Vrba, E. S. 1983. Macroevolutionary trends: new perspectives on the roles of adaptation and incidental effect. Science 221:387389.
Vrba, E. S. 1984. What is species selection? Systematic Zoology 33:318328.
Vrba, E. S., and Eldredge, N.. 1984. Individuals, hierarchies and processes: towards a more complete evolutionary theory. Paleobiology 10:146171.
Vrba, E. S., and Gould, S. J.. 1986. The hierarchical expansion of sorting and selection: sorting and selection cannot be equated. Paleobiology 12:217228.
Wachsmuth, C., and Springer, F.. 1897. The North American Crinoidea Camerata. Harvard College Museum of Comparative Zoology Memoirs 20 and 21.
Waters, J. A., and Maples, C. G.. 1991. Mississippian pelmatozoan community reorganization; a predation-mediated faunal change. Paleobiology 17:400410.
Waters, J. A., and Webster, G. A.. 2009. A re-evaluation of Famennian echinoderm diversity: implications for patterns and extinction and rebound in the Late Devonian. In P. Königshof, ed. Devonian change: case studies in palaeogeography and palaeoecology. Geological Society of London Special Publication 314:149161.
Zangerl, R., and Richardson, E. S.. 1963. The paleoecological history of two Pennsylvanian black shales. Chicago Natural History Museum, Chicago.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed