Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-07T22:04:57.106Z Has data issue: false hasContentIssue false

Stereoscopic vision in one eye: paleophysiology of the schizochroal eye of trilobites

Published online by Cambridge University Press:  08 April 2016

William L. Stockton
Affiliation:
Department of Geology, and Graduate Group in Ecology, University of California; Davis, California 95616
Richard Cowen
Affiliation:
Department of Geology, University of California; Davis, California 95616

Abstract

The schizochroal eye of trilobites bears lenses of high optical quality. Cooperation between adjacent lenses, which must have had retinas rather than rhabdomeres, might have allowed the trilobite stereoscopic vision throughout its visual field. We propose a simple neurophysiological model for the schizochroal eye in which neural connections between lenses on vertical “visual strips” could have provided the integration necessary for stereoscopic vision. Simple neural signals could have coded information on the position, size, speed and nature of an object in the field of view. The model of stereoscopic vision is consistent with data on the shape of the eye, the arrangement of lenses on its surface, and with current views on the origin and early evolution of the schizochroal eye. It implies that the lens arrangement, neural network and shape of the eye surface were a coadapted morphological complex, and it is consistent with accepted ideas of the Phacopina as living in benthic habitats in the photic zone.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andersen, E. E. and Weymouth, F. W. 1923. Visual perception and the retinal mosaic. Am. J. Physiol. 64:561594.CrossRefGoogle Scholar
Campbell, K. S. W. 1975. The functional anatomy of phacopid trilobites: musculature and eyes. J. Proc. R. Soc. New South Wales. 108:168188.CrossRefGoogle Scholar
Chlupáč, I. 1975. The distribution of phacopid trilobites in space and time. Fossils and Strata. 4:399408.CrossRefGoogle Scholar
Clarkson, E. N. K. 1966a. Schizochroal eyes and vision of some Silurian acastid trilobites. Palaeontology. 9:129.Google Scholar
Clarkson, E. N. K. 1966b. Schizochroal eyes and vision in some phacopid trilobites. Palaeontology. 9:464487.Google Scholar
Clarkson, E. N. K. 1967. Fine structure of the eye in two species of Phacops (Trilobita). Palaeontology. 10:603616.Google Scholar
Clarkson, E. N. K. 1968. Structure of the eye of Crozonaspis struvei (Trilobita, Dalmanitidae, Zeliszkellinae). Senckenbergiana Lethaea. 49:383391.Google Scholar
Clarkson, E. N. K. 1969. On the schizochroal eyes of three species of Reedops (Trilobita: Phacopidae) from the Lower Devonian of Bohemia. Trans. R. Soc. Edinburgh. 68:183205.CrossRefGoogle Scholar
Clarkson, E. N. K. 1971. On the early schizochroal eyes of Ormathops (Trilobita, Zeliszkellinae). Mém. Bur. Recherches Geol. Mineral. 73:5163.Google Scholar
Clarkson, E. N. K. 1973a. The eyes of Asaphus raniceps Dalman (Trilobita). Palaeontology. 16:425444.Google Scholar
Clarkson, E. N. K. 1973b. Morphology and evolution of the eye in Upper Cambrian Olenidae (Trilobita). Palaeontology. 16:735763.Google Scholar
Clarkson, E. N. K. 1975. The evolution of the eye in trilobites. Fossils and Strata. 4:731.CrossRefGoogle Scholar
Clarkson, E. N. K. and Levi-Setti, R. 1975. Trilobite eyes and the optics of Des Cartes and Huygens. Nature. 254:663667.CrossRefGoogle ScholarPubMed
Cowen, R. and Kelley, J. S. 1976. Stereoscopic vision within the schizochroal eye of trilobites. Nature. 261:130131.Google Scholar
Davson, H. 1972. The Physiology of the Eye. 643 pp. Academic Press; New York.Google Scholar
Eldredge, N. 1972. Systematics and evolution of Phacops rana (Green, 1832) and Phacops iowensis Delo, 1935 (Trilobita) from the Middle Devonian of North America. Bull. Am. Mus. Nat. Hist. 147:54114.Google Scholar
Harrington, H. J. et al. 1959. Systematic descriptions. pp. 170540. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology, part O, Arthropoda 1:170–540. Univ. Kansas Press and Geol. Soc. Am.; Lawrence, Kansas.Google Scholar
Hartline, H. K. 1969. Visual receptors and retinal interaction. Science. 164:270278.CrossRefGoogle ScholarPubMed
Jerison, H. J. 1976. Paleoneurology and the evolution of mind. Sci. Am. 234:90101.CrossRefGoogle ScholarPubMed
Stürmer, W. and Bergström, J. 1973. New discoveries on trilobites by X-rays. Paläontol. Z. 47:104141.Google Scholar
Towe, K. M. 1973. Trilobite eyes: calcified lenses in vivo. Science. 179:10071009.Google Scholar
Young, J. Z. 1961. Learning and discrimination in the octopus. Biol. Rev. 36:3296.CrossRefGoogle ScholarPubMed