Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T12:07:53.680Z Has data issue: false hasContentIssue false

Stable isotopes in early Eocene mammals as indicators of forest canopy structure and resource partitioning

Published online by Cambridge University Press:  08 April 2016

Ross Secord
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, NHB MRC 121, Washington, D.C. 20013-7012
Scott L. Wing
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Post Office Box 37012, NHB MRC 121, Washington, D.C. 20013-7012
Amy Chew
Affiliation:
Department of Anatomy, School of Medicine, Stony Brook University, T8-040 HSC, Stony Brook, New York 11794-8081

Abstract

The three dimensional structure of vegetation is an important component of ecosystems, yet it is difficult to reconstruct from the fossil record. Forests or woodlands prevailed at mid-latitudes in North America during the early Eocene but tree spacing and canopy structure are uncertain. Here we use stable carbon isotope values (δ13C) in early Eocene mammalian faunas to infer canopy structure. We compare δ13C values in two diverse fossil assemblages from the central Bighorn Basin to values predicted for mammals in a variety of open and closed habitats, based on modern floras and faunas. We conclude that these early Eocene faunas occupied an open canopy forest. We also use carbon and oxygen isotopes to infer diet and microhabitat. Three higher level taxa have significantly different mean δ13C values, and values are negatively correlated with body mass. The pattern suggests diets high in leaves for larger mammals, and fruit or other non-foliar plant organs for small ones. A preference in the larger mammals for wetter habitats with high water availability to plants may also have contributed to the pattern.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ayliffe, L. K., and Chivas, A. R. 1990. Oxygen isotope composition of the bone phosphate of Australian kangaroos: potential as a palaeoenvironmental recorder. Geochimica et Cosmochimica Acta 54:26032609.Google Scholar
Balasse, M., Smith, A. B., Ambrose, S. H., and Leigh, S. R. 2003. Determining sheep birth seasonality by analysis of tooth enamel oxygen isotope ratios: the Late Stone Age site of Kasteelberg (South Africa). Journal of Archaeological Science 30:205215.Google Scholar
Bao, H. M., Koch, P. L., and Rumble, D. I. 1999. Paleocene-Eocene climatic variation in western North America: evidence from the δ18O of pedogenic hematite. Geological Society of America Bulletin 111:14051415.Google Scholar
Boisseriea, J.-R., Zazzo, A., Merceron, G., Blondel, C., Vignaud, P., Likius, A., Mackaye, H. T., and Brunet, M. 2005. Diets of modern and late Miocene hippopotamids: evidence from carbon isotope composition and micro-wear of tooth enamel. Palaeogeography, Palaeoclimatology, Palaeoecology 221:153174.Google Scholar
Bowen, G. J., Koch, P. L., Gingerich, P. D., Norris, R. D., Bains, S., and Corfield, R. M. 2001. Refined isotope stratigraphy across the continental Paleocene-Eocene boundary on Polecat Bench in the northern Bighorn Basin. Pp. 7388 in Gingerich, 2001b.Google Scholar
Bowen, G. J., Beerling, D. J., Koch, P. L., Zachos, J. C., and Quattlebaum, T. 2004. A humid climate state during the Paleocene/Eocene thermal maximum. Nature 432:495499.Google Scholar
Bown, T. M., and Kraus, M. J. 1981. Lower Eocene alluvial paleosols (Willwood Formation, northwest Wyoming, U.S.A.) and their significance for paleoecology, paleoclimatology, and basin analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 34:130.Google Scholar
Bown, T. M., and Kraus, M. J. 1993. Time-stratigraphic reconstruction and integration of paleopedologic, sedimentologic, and biotic events (Willwood Formation, Lower Eocene, Northwest Wyoming, U.S.A.). Palaios 8:6880.Google Scholar
Bown, T. M., Rose, K. D., Simons, E. L., and Wing, S. L. 1994. Distribution and stratigraphic correlation of upper Paleocene and lower Eocene fossil mammal and plant localities of the Fort Union, Willwood, and Tatman formations, southern Bighorn Basin, Wyoming. U.S. Geological Survey Professional Paper 1540:1103.Google Scholar
Boyle, E. A. 1997. Cool tropical temperatures shift the global δ18O-T relationship: an explanation for the ice core δ18O-borehole thermometry conflict? Geophysical Research Letters 24:273276.Google Scholar
Broadmeadow, M. S. J., and Griffiths, H. 1993. Carbon isotope discrimination and the coupling of CO2 fluxes within forest canopies. Pp. 109129 in Ehleringer, J. R., Hall, A. E., and Farquhar, G. D., eds. Stable isotopes and plant carbon-water relations. Academic Press, San Diego.Google Scholar
Bryant, J. D., and Froelich, P. N. 1995. A model of oxygen isotope fractionation in body water of large mammals. Geochimica et Cosmochimica Acta 59:45234537.Google Scholar
Bump, J. K., Fox-Dobbs, K., Bada, J. L., Koch, P. L., Peterson, R. O., and Vucetichl, J. A. 2007. Stable isotopes, ecological integration and environmental change: wolves record atmospheric carbon isotope trend better than tree rings. Proceedings of the Royal Society of London B 274:24712480.Google Scholar
Cerling, T. E., and Ehleringer, J. R. 2000. Welcome to the C4 world. In Gastaldo, R. A. and DiMichele, W. A., eds. Phanerozoic terrestrial ecosystems. Paleontological Society Papers 6:273286.Google Scholar
Cerling, T. E., and Harris, J. M. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120:347363.Google Scholar
Cerling, T. E., Hart, J. A., and Hart, T. B. 2004. Stable isotope ecology in the Ituri Forest. Oecologia 138:512.Google Scholar
Clementz, M. T., and Koch, P. L. 2001. Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129:461472.Google Scholar
Codron, J., Codron, D., Lee-Thorp, J. A., Sponheimer, M., Bond, W. J., Ruiter, D. D., and Grant, R. 2005. Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. Journal of Archaeological Science 32:17571772.CrossRefGoogle Scholar
Collinson, M. E., and Hooker, J. J. 1991. Fossil evidence of interactions between plants and plant-eating mammals. Philosophical Transactions of the Royal Society of London B 333:197208.Google Scholar
Conover, W. J. 1999. Practical nonparametric statistics, 3d ed. Wiley, New York.Google Scholar
Covert, H. H. 1995. Locomotor adaptations of Eocene primates: adaptive diversity among the earliest prosimians. Pp. 495509 in Alterman, L., Doyle, G. A., and Izard, M. K., eds. Creatures of the dark: the nocturnal prosimians. Plenum, New York.CrossRefGoogle Scholar
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16:436468.CrossRefGoogle Scholar
Demment, M. W., and Van Soest, P. J. 1985. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. American Naturalist 125:641672.Google Scholar
Dunbar, J., and Wilson, A. T. 1983. Oxygen and hydrogen isotopes in fruit and vegetable juices. Plant Physiology 72:725727.Google Scholar
Dutton, A., Wilkinson, B. H., Welker, J. M., Bowen, G. J., and Lohmann, K. C. 2005. Spatial distribution and seasonal variation in 18O/16O of modern precipitation and river water across the conterminous USA. Hydrological Processes 19:41214146.CrossRefGoogle Scholar
Ehleringer, J. R., Field, C. B., Lin, Z.-F., and Kuo, C.-Y. 1986. Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia 70:520526.Google Scholar
Ehleringer, J. R., Kin, Z. F., Field, C. B., Sun, G. C., and Kuo, C. Y. 1987. Leaf carbon isotope ratios of plants from a subtropical monsoon forest. Oecologia 72:109114.Google Scholar
Fricke, H. C., and Wing, S. L. 2004. Oxygen isotope and paleobotanical estimates of temperature and δ18O-latitude gradients over North America during the early Eocene. American Journal of Science 304:612635.Google Scholar
Fricke, H. C., Clyde, W. C., O'Neil, J. R., and Gingerich, P. D. 1998. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming). Earth and Planetary Science Letters 160:193208.Google Scholar
Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U., and Stauffer, B. 1986. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324:237238.Google Scholar
Gingerich, P. D. 1983. Paleocene-Eocene faunal zones and a preliminary analysis of Laramide structural deformation in the Clark's Fork Basin, Wyoming. Wyoming Geological Association Guidebook 34:185195.Google Scholar
Gingerich, P. D. 2001a. Biostratigraphy of the continental Paleocene-Eocene boundary interval on Polecat Bench in the northern Bighorn Basin. Pp. 3772 in Gingerich, 2001b.Google Scholar
Gingerich, P. D. 2001b. Paleocene-Eocene stratigraphy and biotic change in the Bighorn and Clarks Fork basins, Wyoming. University of Michigan Papers on Paleontology 33.Google Scholar
Greenwood, D. R., and Wing, S. L. 1995. Eocene continental climates and latitudinal temperature gradients. Geology 23:10441048.Google Scholar
Gunnell, G. F. 1997. Wasatchian-Bridgerian (Eocene) paleoecology of the western interior of North America: changing paleoenvironments and taxonomic composition of omomyid (Tarsiiformes) primates. Journal of Human Evolution 32:105132.Google Scholar
Gunnell, G. F., Morgan, M. E., Maas, M. C., and Gingerich, P. D. 1995. Comparative paleoecology of Paleogene and Neogene mammalian faunas—trophic structure and composition. Palaeogeography, Palaeoclimatology, Palaeoecology 115:265286.CrossRefGoogle Scholar
Hanba, Y. T., Mori, S., Lei, T. T., Koike, T., and Wada, E. 1997. Variations in leaf δ13C along a vertical profile of irradiance in a temperate Japanese forest. Oecologia 110:253261.Google Scholar
Heaton, T. H. E. 1999. Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: implications for paleodiet studies. Journal of Archaeological Science 26:637649.Google Scholar
Iacumin, P., and Longinelli, A. 2002. Relationship between δ18O values for skeletal apatite from reindeer and foxes and yearly mean δ18O values of environmental water. Earth and Planetary Science Letters 201:213219.Google Scholar
Janis, C. M. 1976. The evolutionary strategy of the Equidae and the origins of rumen and cecal digestion. Evolution 30:757774.Google Scholar
Janis, C. M. 1984. Tapirs as living fossils. Pp. 8086 in Eldredge, N. and Stanley, S., eds. Living fossils. Springer, New York.Google Scholar
Janis, C. M. 2000. Patterns in the evolution of herbivory of large terrestrial mammals: the Paleogene of North America. Pp. 168222 in Sues, H.-D., ed. Evolution of herbivory in terrestrial vertebrates. Cambridge University Press, Cambridge.Google Scholar
Jetz, W., Carbone, C., Fulford, J., and Brown, J. H. 2004. The scaling of animal space use. Science 306:266268.Google Scholar
Jolly, A. 1985. The evolution of primate behaviour, 2d ed. Macmillan, New York.Google Scholar
Koch, P. L. 1998. Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences 26:573613.Google Scholar
Koch, P. L., Zachos, J. C., and Dettman, D. L. 1995. Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA). Palaeogeography, Palaeoclimatology, Palaeoecology 115:6189.Google Scholar
Koch, P. L., Tuross, N., and Fogel, M. L. 1997. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24:417429.Google Scholar
Koch, P. L., Hoppe, K. A., and Webb, D. S. 1998. The isotopic ecology of late Pleistocene mammals in North America, Part 1. Florida. Chemical Geology 152:119138.CrossRefGoogle Scholar
Koch, P. L., Clyde, W. C., Hepple, R. P., Fogel, M. L., Wing, S. L., and Zachos, J. C. 2003. Carbon and oxygen isotope records from paleosols spanning the Paleocene-Eocene boundary, Bighorn Basin, Wyoming. In Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E., eds. Causes and consequences of globally warm climates in the early Paleogene. Geological Society of America Special Paper 369:19.Google Scholar
Kohn, M. J. 1996. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60:48114829.Google Scholar
Kohn, M. J., and Welker, J. M. 2005. On the temperature correlation of δ18O in modern precipitation. Earth and Planetary Science Letters 231:8796.Google Scholar
Körner, C., Farquhar, G. D., and Roksandic, Z. 1988. A global survey of carbon isotope discrimination in plants from high altitudes. Oecologia 74:623632.Google Scholar
Körner, C., Farquhar, G. D., and Wong, S. C. 1991. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88:3040.Google Scholar
Kraus, M. J., and Riggins, S. 2007. Transient drying during the Paleocene–Eocene Thermal Maximum (PETM): analysis of paleosols in the Bighorn Basin, Wyoming. Palaeogeography, Palaeoclimatology, Palaeoecology 245:444461.CrossRefGoogle Scholar
Langer, P. 2002. The digestive tract and life history of small mammals. Mammal Review 32:107131.Google Scholar
Lee-Thorp, J. A., and van der Merwe, N. J. 1987. Carbon isotope analysis of fossil bone apatite. South African Journal of Science 83:712715.Google Scholar
Legendre, S. 1986. Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Palaeovertebrata 16:191212.Google Scholar
Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M., and Ehleringer, J. R. 2006. A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences USA 103:1120111205.Google Scholar
Locklair, R. E., and Lerman, A. 2005. A model of Phanerozoic cycles of carbon and calcium in the global ocean: evaluation and constraints on ocean chemistry and input fluxes. Chemical Geology 217:113126.Google Scholar
Lynch-Stieglitz, J., Stocker, T. F., Broecker, W. S., and Fairbanks, R. D. 1995. The influence of air-sea exchange on the isotopic composition of oceanic carbon: observations and modeling. Global Biogeochemical Cycles 9:653665.Google Scholar
MacFadden, B. J., and Cerling, T. E. 1996. Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: a 10 million-year sequence from the Neogene of Florida. Journal of Vertebrate Paleontology 16:103115.Google Scholar
MacFadden, B. J., Cerling, T. E., and Prado, J. 1996. Cenozoic terrestrial ecosystem evolution in Argentina: evidence from carbon isotopes of fossil mammal teeth. Palaios 11:319327.Google Scholar
Magioncalda, R., Dupuis, C., Smith, T., Steurbaut, E., and Gingerich, P. D. 2004. Paleocene-Eocene carbon isotope excursion in organic carbon and pedogenic carbonate: direct comparison in a continental stratigraphic section. Geology 32:553556.CrossRefGoogle Scholar
Mook, W. G. 1986. 13C in atmospheric CO2 . Netherlands Journal of Sea Research 20:212223.Google Scholar
Mooney, H. A., Bullock, S. H., and Ehleringer, J. R. 1989. Carbon isotope ratios of plants of a tropical dry forest in Mexico. Functional Ecology 3:137142.CrossRefGoogle Scholar
Nowak, R. M., and Paradiso, J. L. 1983. Walker's mammals of the world. Johns Hopkins University Press, Baltimore.Google Scholar
Ogg, J. G., and Smith, A. G. 2004. The geomagnetic polarity time scale. Pp. 6386 in Gradstein, F. M., Ogg, J. G., and Smith, A. G., eds. A geologic time scale 2004. Cambridge University Press, Cambridge.Google Scholar
Passey, B. H., Cerling, T. E., Perkins, M. E., Voorhies, M. R., Harris, J. M., and Tucker, S. T. 2002. Environmental change in the Great Plains: an isotopic record from fossil horses. Journal of Geology 110:123140.Google Scholar
Passey, B. H., Robinson, T. F., Ayliffe, L. K., Cerling, T. E., Sponheimer, M., Dearing, M. D., Roeder, B. L., and Ehleringer, J. R. 2005. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. Journal of Archaeological Science 32:14591470.Google Scholar
Richard, A. F. 1985. Primates in nature. W. H. Freeman, New York.Google Scholar
Rose, K. D. 2001. Compendium of Wasatchian mammal postcrania from the Willwood Formation. Pp. 157183 in Gingerich, 2001b.Google Scholar
Schankler, D. 1980. Faunal zonation of the Willwood Formation in the central Bighorn Basin, Wyoming. Pp. 99114 in Gingerich, 2001b.Google Scholar
Secord, R., Gingerich, P. D., Smith, M. E., Clyde, W. C., Wilf, P., and Singer, B. S. 2006. Geochronology and mammalian biostratigraphy of middle and upper Paleocene continental strata, Bighorn Basin, Wyoming. American Journal of Science 306:211245.Google Scholar
Simons, E. L. 1960. The Paleocene Pantodonta. Transactions of the American Philosophical Society 50:199.Google Scholar
Smith, M. E., Singer, B., and Carroll, A. 2004. Reply: 40Ar/39Ar geochronology of the Eocene Green River Formation, Wyoming. Geological Society of America Bulletin 116:253256.Google Scholar
Sobrado, M. A., and Ehleringer, J. R. 1997. Leaf carbon isotope ratios from a tropical dry forest in Venezuela. Flora 192:121124.Google Scholar
Sokal, R. R., and Rohlf, J. F. 1997. Biometry: the principles and practice of statistics in biological research, 3d ed. W. H. Freeman, New York.Google Scholar
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E. 1997. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497500.Google Scholar
Sponheimer, M., and Lee-Thorp, J. A. 2001. The oxygen isotope composition of mammalian enamel carbonate from Morea Estate, South Africa. Oecologia 126:153157.Google Scholar
Stewart, G. R., Turnbull, M. H., Schmidt, S., and Erskine, P. D. 1995. 13C natural abundances in plant communities along a rainfall gradient: a biological integrator of water availability. Australian Journal of Plant Physiology 22:5155.Google Scholar
Strömberg, C. A. E. 2004. Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of North America during the late Eocene to early Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology 207:239275.CrossRefGoogle Scholar
Su, Y., Langmuir, C. H., and Asimow, P. D. 1999–2002. PetroPlot, a plotting and data management tool set for Microsoft Excel. Distributed by the authors through Lamont-Doherty Earth Observatory, Columbia University. http://www.petdb.org/petdbWeb/search/PetroPlot/index.html Google Scholar
Sundquist, E. T. 1993. The global carbon dioxide budget. Science 259:934941.CrossRefGoogle Scholar
Tyrrell, T., and Zeebe, R. E. 2004. History of carbonate ion concentration over the last 100 million years. Geochimica et Cosmochimica Acta 68:35213530.Google Scholar
Upchurch, G. R. Jr., and Wolfe, J. A. 1987. Mid-Cretaceous to early Eocene vegetation and climate: evidence from fossil leaves and woods. Pp. 75105 in Friis, E. M., Chaloner, W. G., and Crane, P. R., eds. The origins of angiosperms and their biological consequences. Cambridge University Press, Cambridge.Google Scholar
van der Merwe, N. J., and Medina, E. 1989. Photosynthesis and 13C/12C ratios in Amazonian rain forests. Geochimica et Cosmochimica Acta 53.Google Scholar
van der Merwe, N. J., and Medina, E. 1991. The canopy effect, carbon isotope ratios and food-webs in Amazonia. Journal of Archaeological Science 18:249259.Google Scholar
Van Houten, F. B. 1945. Early Cenozoic facies in the Rocky Mountain Region. Science 101:430431.Google Scholar
Vogel, J. C. 1978. Recycling of CO2 in a forest environment. Oecologia Plantarum 13:8994.Google Scholar
Vogel, J. C. 1993. Variability of carbon isotope fractionation during photosynthesis. Pp. 2946 in Ehleringer, J. R., Hall, A. E., and Farquhar, G. D., eds. Stable isotopes and plant carbon-water relations. Academic Press, San Diego.Google Scholar
Wilf, P. 2000. Late Paleocene-early Eocene climate changes in southwestern Wyoming: paleobotanical analysis. Geological Society of America Bulletin 112:292307.Google Scholar
Wing, S. L., and Harrington, G. J. 2001. Floral response to rapid warming in the earliest Eocene and implications for concurrent faunal change. Paleobiology 27:539563.Google Scholar
Wing, S. L., Bown, T. M., and Obradovich, J. D. 1991. Early Eocene biotic and climatic change in interior western North America. Geology 19:11891192.Google Scholar
Wing, S. L., Alroy, J., and Hickey, L. J. 1995. Plant and mammal diversity in the Paleocene to early Eocene of the Bighorn Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 115:117155.Google Scholar
Wing, S. L., Bao, H. M., and Koch, P. L. 2000. An early Eocene cool period? Evidence for continental cooling during the warmest part of the Cenozoic. Pp. 197237 in Huber, B. T., MacLeod, K., and Wing, S. L., eds. Warm climates in Earth history. Cambridge University Press, Cambridge.Google Scholar
Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M., and Freeman, K. H. 2005. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science 310:993996.CrossRefGoogle ScholarPubMed
Yan, C.-R., Han, X.-G., Chen, L.-Z., Huang, J.-H., and Su, B. 1999. Foliar δ13C within temperate deciduous forest: its spatial change and interspecies variation. Acta Botanica Sinica 40:853859.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.Google Scholar
Supplementary material: File

Secord et al. supplementary material

Appendix

Download Secord et al. supplementary material(File)
File 212.5 KB