Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-27T11:25:48.028Z Has data issue: false hasContentIssue false

Sea-level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies

Published online by Cambridge University Press:  08 February 2016

Andrew. B. Smith
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom. E-mail: a.smith@nhm.ac.uk and neam@nhm.ac.uk
Andrew. S. Gale
Affiliation:
School of Environmental Sciences, University of Greenwich, Medway University Campus, Chatham Maritime ME4 4TB, United Kingdom. E-mail: a.gale@nhm.ac.uk
Neale E. A. Monks
Affiliation:
Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom. E-mail: a.smith@nhm.ac.uk and neam@nhm.ac.uk

Abstract

The association between mass extinction in the marine realm and eustatic sea-level change in the Mesozoic is well documented, but perplexing, because it seems implausible that sea-level change could actually cause a major extinction. However, large-scale cycles of sea-level change can and do alter the ratio of shallow to deep marine continental-shelf deposits preserved in the rock record both regionally and globally. This taphonomic megabias alone could be driving patterns of first and last occurrence and standing diversity because diversity and preservation potential both change predictably with water depth. We show that the Cenomanian/Turonian faunal event in western Europe has all the predicted signatures expected if taphonomic megabias was the cause. Grade taxa terminating in pseudoextinction and Lazarus taxa are predominantly found in the onshore facies that disappear for extended periods from the rock record. Before other mass extinctions are taken at face value, a much more careful analysis of biases in the rock record needs to be carried out, and faunal disappearances need to be analyzed within a phylogenetic framework.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barrell, J. 1917. Rhythms and the measurement of geological time. Geological Society of America Bulletin 28:745904.CrossRefGoogle Scholar
Brett, C. E. 1995. Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. Palaios 10:597616.CrossRefGoogle Scholar
Brett, C. E. 1998. Sequence stratigraphy, paleoecology and evolution: biotic clues and responses to sea-level fluctuations. Palaios 13:241262.CrossRefGoogle Scholar
Busson, G., and Cornée, A. 1996. L'événement océanique anoxique du Cénomanien supérieur-terminal: une revue et une interprétation mettant en jeu une stratification des eaux marines par le CO2 mantellique. Société Géologique du Nord 23:132.Google Scholar
Erwin, D. H. 1993. The great Paleozoic crisis: life and death in the Permian. Columbia University Press, New York.Google Scholar
Gale, A. S. 1995. Cyclostratigraphy and correlation of the Cenomanian of western Europe. In House, M. R. and Gale, A. S., eds. Orbital forcing timescales and cyclostratigraphy. Geological Society of London Special Publication 85:177197.Google Scholar
Gale, A. S., Hancock, J. M., and Kennedy, W. J. 1999. Biostratigraphical and sequence correlation of the Cenomanian successions in Mangyshlak (W. Kazachstan) and Crimea (Ukraine) with those in southern England. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre 69(Suppl. A):6786.Google Scholar
Gale, A. S., Smith, A. B., Monks, N. E. A., Young, J. A., Howard, A., Wray, D. S., and Huggett, J. M. 2000. Marine biodiversity through the late Cenomanian-early Turonian: palaeocoeanographic controls and sequence stratigraphic biases. Journal of the Geological Society, London 157:745757.CrossRefGoogle Scholar
Grassle, J. F., and Maciolek, N. J. 1992. Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. American Naturalist 139:313341.CrossRefGoogle Scholar
Gray, J. S., Poore, G. C. B., Ugland, K. I., Wilson, R. S., Olsgard, F., and Johannessen, O. 1997. Coastal and deep-sea benthic diversities compared. Marine Ecology Progress Series 159:97103.CrossRefGoogle Scholar
Hallam, A. 1989. The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Philosophical Transactions of the Royal Society of London B 325:437455.Google Scholar
Hallam, A., and Wignall, P. B. 1997. Mass extinctions and their aftermath. Oxford University Press, Oxford.CrossRefGoogle Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science 235:11561167.CrossRefGoogle Scholar
Harries, P. J., and Little, C. T. S. 1999. The early Toarcian (Early Jurassic) and the Cenomanian-Turonian (Late Cretaceous) mass extinctions: similarities and constraints. Palaeogeography, Palaeoclimatology, Palaeoecology 154:3966.CrossRefGoogle Scholar
Hay, W. W. 1995. Cretaceous paleoceanography. Geologica Carpathica 46:257266.Google Scholar
Holland, S. M. 1995. The stratigraphic distribution of fossils. Paleobiology 21:92109.CrossRefGoogle Scholar
Holland, S. M. 1999. The new stratigraphy and its promise for paleobiology. Paleobiology 25:409416.CrossRefGoogle Scholar
Jablonski, D. 1980. Apparent versus real biotic effects of transgressions and regressions. Paleobiology 6:397407.CrossRefGoogle Scholar
Jablonski, D. 1985. Marine regressions and mass extinctions: a test using the modern biota. Pp. 183229in Valentine, J. W., ed. Phanerozoic diversity patterns—profiles in macroevolution. Princeton University Press, Princeton, N.J.Google Scholar
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.CrossRefGoogle ScholarPubMed
Jablonski, D., and Flessa, K. W. 1986. The taxonomic structure of shallow-water marine faunas: implications for Phanerozoic extinctions. Malacologia 27:4366.Google Scholar
Karakassis, I., and Eleitheriou, A. 1997. The continental shelf of Crete: structure of macrobenthic communities. Marine Ecology Progress Series 160:185196.CrossRefGoogle Scholar
Kidwell, S. M., and Baumiller, T. 1990. Experimental disintegration of regular echinoids: roles of temperature, oxygen, and decay thresholds. Paleobiology 16:247272.CrossRefGoogle Scholar
Loutit, T. S., Hardenbol, J., Vail, P. R., and Baum, G. R. 1988. Condensed sections: the key to age dating and correlation of continental margin sequences. In Wilgus, C. K. et al. eds. Sea-level changes: an integrated approach. SEPM Special Publication 42:183217.CrossRefGoogle Scholar
MacLeod, N. 1998. Impacts and marine invertebrate extinctions. In Grady, M. M., Hutchison, R., McCall, G. H. J., and Rothery, D. A., eds. Meteorites: flux with time and impact effects. Geological Society Special Publication 140:217246.Google Scholar
Newell, N. D. 1967. Revolutions in the history of life. Geological Society of America Special Paper 89:6391.CrossRefGoogle Scholar
Parsons, K. M., and Brett, C. E. 1991. Taphonomic processes and biases in modern marine environments: an actualistic perspective on fossil assemblage preservation. Pp. 2265in Donovan, S. K., ed. The process of fossilization. Columbia University Press, New York.Google Scholar
Patzkowsky, M. E., and Holland, S. M. 1999. Biofacies replacement in a sequence stratigraphic framework: Middle and Upper Ordovician of the Nashville Dome, Tennessee, USA. Palaios 14:301323.CrossRefGoogle Scholar
Paul, C. R. C., and Mitchell, S. F. 1994. Is famine a common factor in marine mass extinctions? Geology 22:679682.2.3.CO;2>CrossRefGoogle Scholar
Paulay, G. 1990. Effects of late Cenozoic sea-level fluctuations on the bivalve faunas of tropical oceanic islands. Paleobiology 16:415434.CrossRefGoogle Scholar
Robaszynski, F., Gale, A. S., Juignet, P., Amerdo, F., and Hardenbol, J. 1998. Sequence stratigraphy in the Upper Cretaceous series of the Anglo-Paris basin: exemplified by the Cenomanian stage. SEPM Special Publication 60:363386.Google Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Sageman, B. B., Rich, J., Arthur, M. A., Birchfield, G. E., and Dean, W. E. 1997. Evidence for Milankovitch periodicities in Cenomanian Turonian lithologic and geochemical cycles, western interior U.S.A. Journal of Sedimentary Research 67:286302.Google Scholar
Schaff, A. 1996. Sea-level changes, continental shelf morphology, and global paleoecological constraints in the shallow benthic realm: a theoretical approach. Palaeogeography. Palaeoclimatology, Palaeoecology 121:259271.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1986. Phanerozoic overview of mass extinction. Pp. 277295in Raup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin.CrossRefGoogle Scholar
Sepkoski, J. J. Jr., and Raup, D. M. 1986. Periodicity in marine extinction events. Pp. 336in Elliott, D. K., ed. Dynamics of extinction. Wiley, New York.Google Scholar
Shigei, M. 1986. The echinoids of Sagami Bay. Maruzen, Tokyo.Google Scholar
Smith, A. B. 1994. Systematics and the fossil record: documenting evolutionary patterns. Blackwell Scientific, Oxford.CrossRefGoogle Scholar
Smith, A. B.In press. Probing the cassiduloid origins of clypeasteroid echinoids using stratigraphically restricted parsimony analysis. Paleobiology 27:392404.2.0.CO;2>CrossRefGoogle Scholar
Swofford, D. L. 2000. PAUP Phylogenetic analysis using parsimony (and other methods), Version 4. Sinauer, Sunderland, Mass.Google Scholar
Vail, P., Audemard, F., Bowman, S. A., Eisner, P. N., and Perez-Cruz, C. 1991. The stratigraphic signatures of tectonics, eustasy and sedimentology—an overview. Pp. 617659in Einsele, G., Ricken, W., and Seilacher, A., eds. Cycles and events in stratigraphy. Springer, Berlin.Google Scholar
Valentine, J. W., and Jablonski, D. 1991. Biotic effects of sea level change: the Pleistocene test. Journal of Geophysical Research 96:68736878.CrossRefGoogle Scholar
Valentine, J. W., and Jablonski, D. 1993. Fossil communities: compositional variation at many time scales. Pp. 341349in Ricklefs, R. E. and Schluter, D., eds. Species diversity in ecological communities: historical and geographic perspectives. University of Chicago Press, Chicago.Google Scholar
Wignall, P. B., and Twitchett, R. J. 1996. Oceanic anoxia and the end Permian mass extinction. Science 272:11551158.CrossRefGoogle ScholarPubMed