Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-22T13:27:29.630Z Has data issue: false hasContentIssue false

The role of regional survivor incumbency in the evolutionary recovery of calcareous nannoplankton from the Cretaceous/Paleogene (K/Pg) mass extinction

Published online by Cambridge University Press:  05 October 2015

Jonathan D. Schueth
Affiliation:
Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A. Email: bralower@psu.edu.
Timothy J. Bralower
Affiliation:
Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A. Email: bralower@psu.edu.
Shijun Jiang
Affiliation:
Department of Ecology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China.
Mark E. Patzkowsky
Affiliation:
Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A. Email: bralower@psu.edu.

Abstract

The earliest Paleocene record of calcareous nannoplankton presents a unique opportunity to understand the evolutionary recovery of life from mass extinction. Nannoplankton were devastated at the Cretaceous/Paleogene boundary and their subsequent recovery can be studied in great detail because of their abundance in sediments, continuous stratigraphic occurrence, and near global distribution. Here we determine when and where new species of nannoplankton originated and how they dispersed following the Cretaceous/Paleogene mass extinction. Initially, we focus our efforts on North Pacific and South Atlantic deep sea sites with orbital age control to compare the precise timing and dynamics of the recovery between the locations. We then broaden our investigation to six sites from different basins and a variety of environments to study global patterns of the initial recovery. Our results show that many taxa in key Paleogene lineages originated in the North Pacific Ocean and that assemblages comprised primarily of new Paleogene taxa were not observed at other sites for several hundred thousand years. Survivors that were adapted to eutrophic post extinction conditions rapidly expanded in Southern Hemisphere sites where they dominated assemblages for most of the initial recovery. We therefore hypothesize that groups of survivors formed regionally incumbent assemblages in the Southern Hemisphere that limited diversification and dispersal of new Paleogene taxa. The end of survivor dominance correlates to the recovery of the biologic pump and subsequent decrease in surface ocean nutrient concentration 300–400 Kyr after the boundary. Only after survivors were removed did new Paleogene nannoplankton assemblages become abundant globally. Our results indicate that competition from regionally incumbent survivors was as an important control on the K/Pg recovery of nannoplankton.

Type
Articles
Copyright
Copyright © 2015 The Paleontological Society. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, J. B., Mann, M. E., and D’Hondt, S.. 2004. The Cretaceous-Tertiary extinction: modeling carbon flux and ecological response. Paleoceanography 19:PA1002.CrossRefGoogle Scholar
Alegret, L., and Thomas, E.. 2009. Food supply to the seafloor in the Pacific Ocean after the Cretaceous/Paleogene boundary event. Marine Micropaleontology 73:105116.CrossRefGoogle Scholar
Alegret, L., Thomas, E., and Lohmann, K. C.. 2012. End-Cretaceous marine mass extinction not caused by productivity collapse. Proceedings of the National Academy of Sciences 109:728732.CrossRefGoogle Scholar
Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V.. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:10351108.CrossRefGoogle ScholarPubMed
Antretter, M., Inokuchi, H., and Zhao, X.. 2003. Paleomagnetic and rock magnetic properties of sediment samples from Ocean Drilling Program Leg 183, Kerguelen Plateau, Holes 1138A and 1140A. In F. A. Frey, M. F. Coffin, P. J. Wallace, and P. G. Quilty, eds. Proceedings of the Ocean Drilling Program, Scientific Results 183:1–17. doi:10.2973/odp.proc.sr.183.004.2003.CrossRefGoogle Scholar
Arney, J. E., and Wise, S. W.. 2003. Paleocene-Eocene nannofossil biostratigraphy of ODP Leg 183, Kerguelen Plateau. In F. A. Frey, M. F. Coffin, P. J. Wallace, and P. G. Quilty, eds. Proceedings of the Ocean Drilling Program, Scientific Results 183: 1–59. doi:10.2973/odp.proc.sr.183.014.2003.CrossRefGoogle Scholar
Aubry, M.-P. 1998. Early Paleogene calcareous nannoplankton evolution: a tale of climatic amelioration. Pp. 158203in M.-P. Aubry, D. R. Prothero, and W. A. Berggren, eds. Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records. Columbia University Press, New York.Google Scholar
Axelrod, D. L., and Bailey, H. P.. 1968. Cretaceous dinosaur extinction. Evolution 22:595611.CrossRefGoogle ScholarPubMed
Benton, M. J. 1991. Extinction, biotic replacements, and clade interactions. Pp. 89102in E. C. Dudley, ed. The Unity of Evolutionary Biology. Dioscorides Press, Portland, Oregon.Google Scholar
Bernaola, G., and Monechi, S.. 2007. Calcareous nannofossil extinction and survivorship across the Cretaceous-Paleogene boundary at Walvis Ridge (ODP Hole 1262C, South Atlantic Ocean). Palaeogeography, Palaeoclimatology, Palaeoecology 255:132156.CrossRefGoogle Scholar
Birch, H. S., Coxall, H. K., and Pearson, P. N.. 2012. Evolutionary ecology of Early Paleocene planktonic forminifera: size, depth habitat and symbiosis. Paleobiology 38:374390.CrossRefGoogle Scholar
Bown, P. 2005. Selective calcareous nannoplankton survivorship at the Cretaceous-Tertiary boundary. Geology 33:653656.CrossRefGoogle Scholar
Bown, P. R., and Young, J. R.. 1998. Techniques. Pp. 1628 in P. R. Bown, ed. Calcareous Nannofossil Biostratigraphy. Kluwer Academic, Boston.CrossRefGoogle Scholar
Bown, P. R., Lees, J. A., and Young, J. R.. 2004. Calcareous nannoplankton evolution and diversity through time. Pp. 481508 in H. R. Thierstein, and J. R. Young, eds. Coccolithophores: From Molecular Processes to Global Impact. Springer, Berlin.CrossRefGoogle Scholar
Bramlette, M. N., and Martini, E.. 1964. The great change in calcareous nannoplankton fossils between the Maestrichtian and Danian. Micropaleontology 10:291322.CrossRefGoogle Scholar
Cermeño, P., and Falkowski, P. G.. 2009. Controls on diatom biogeography in the ocean. Science 325:15391541.CrossRefGoogle ScholarPubMed
Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18:117143.CrossRefGoogle Scholar
Coxall, H. K., D’Hondt, S., and Zachos, J. C.. 2006. Pelagic evolution and environmental recovery after the Cretaceous-Paleogene mass extinction. Geology 34:297300.CrossRefGoogle Scholar
Culver, S. J. 2003. Benthic foraminifera across the Cretaceous-Tertiary (K-T) boundary: a review. Marine Micropaleontology 47:177226.CrossRefGoogle Scholar
D’Hondt, S. 2005. Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annual Reviews of Ecology. Evolution and Systematics 36:295317.CrossRefGoogle Scholar
D’Hondt, S., Pilson, M. E., Sigurdsson, H., Hanson, A. K., and Carey, S.. 1994. Surface-water acidification and the extinction at the Cretaceous-Tertiary boundary. Geology 22:983986.2.3.CO;2>CrossRefGoogle Scholar
D’Hondt, S., Herbert, T. D., King, J., and Gibson, C.. 1996. Planktonic foraminifera, asteroids and marine production: Death and recovery at the Cretaceous-Tertiary boundary. In G. Ryder, D. Fastovsky, and S. Gartner, eds. The Cretaceous-Tertiary event and other catastrophes in earth history. Geological Society of America Special Paper 307:303–317.Google Scholar
D’Hondt, S., Donaghay, P., Zachos, J. C., Luttenberg, D., and Lindinger, M.. 1998. Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction. Science 282:276289.CrossRefGoogle ScholarPubMed
Erickson, D. J., and Dickson, S. M.. 1987. Global trace-element biogeochemistry at the K/T boundary: Oceanic and biotic response to a hypothetical meteorite impact. Geology 15:10141017.2.0.CO;2>CrossRefGoogle Scholar
Erwin, D. H. 1998. The end and the beginning: recoveries from mass extinctions. Trends in Ecology and Evolution 13:344349.CrossRefGoogle ScholarPubMed
Erwin, D. H 2001. Lessons from the past: Biotic recoveries from mass extinctions. Proceedings of the National Academy of Sciences USA 98:53995403.CrossRefGoogle ScholarPubMed
Fridley, J. D., Stachowicz, J. J., Naeem, S., Sax, D. F., Seabloom, E. W., Smith, M. D., Stohlgren, T. J., Tilman, D., and Von Holle, B.. 2007. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:317.CrossRefGoogle ScholarPubMed
Fuqua, L. M., Bralower, T. J., Arthur, M. A., and Patzkowsky, M. E.. 2008. Evolution of calcareous nannoplankton and the recovery of marine food webs after the Cretaceous-Paleocene mass extinction. Palaios 23:185194.CrossRefGoogle Scholar
Galbrun, B. 1992. Magnetostratigraphy of Upper Cretaceous and lower Tertiary sediments, site 761 and 762, Exmouth Plateau, Northwest Australia. In U. von Rad, B. U. Haq, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results 122:699–716.CrossRefGoogle Scholar
Gilinsky, N. L., and Bamback, R. K.. 1987. Asymmetrical patterns of origination and extinction in higher taxa. Paleobiology 13:427445.CrossRefGoogle Scholar
Griffis, K., and Chapman, D. J.. 1988. Survival of phytoplankton under prolonged darkness; implications for the Cretaceous-Tertiary boundary darkness hypothesis. Palaeogeography, Palaeoclimatology, Palaeoecology 67:305314.CrossRefGoogle Scholar
Groot, J. J., de Jonge, R. B. G., Langereis, C. G., ten Kate, W. G. H Z., and Smit, J.. 1989. Magnetostratigraphy of the Cretaceous-Tertiary boundary at Agost (Spain). Earth and Planetary Science Letters 94:385397.CrossRefGoogle Scholar
Hansen, T. 1988. Early Tertiary radiation of marine mollusks and the long-term effects of the Cretaceous-Tertiary extinction. Paleobiology 14:3751.CrossRefGoogle Scholar
Hansen, T. A., Farrel, B. R., and Upshaw, B.. 1993a. The first 2 million years after the Cretaceous-Tertiary boundary in east Texas-Rate and paleoecology of the molluscan recovery. Paleobiology 19:251265.CrossRefGoogle Scholar
Hansen, T. A., Upshaw, B., Kauffman, E. G., and Gose, W.. 1993b. Patterns of molluscan extinction and recovery across the Cretaceous-Tertiary boundary in east Texas; report on new outcrops. Cretaceous Research 14:685706.CrossRefGoogle Scholar
Hansen, T. A., Kelley, P. H., and Haasl, D. M.. 2004. Paleoecological patterns in molluscan extinctions and recoveries: comparison of the Cretaceous-Paleogene and Eocene-Oligocene extinctions in North America. Palaeogeography, Palaeoclimatology, Palaeoecology 214:213242.CrossRefGoogle Scholar
Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C., and Martiny, J. B. H.. 2012. Beyond biogeographic patterns: processes shaping the microbial landscape. Nature Reviews Microbiology 10:497506.CrossRefGoogle ScholarPubMed
Harries, P. J. 1999. Repopulations from Cretaceous mass extinctions; environmental and/or evolutionary controls? in E. Barrera, and C. C. Johnson, eds. Evolution of the Cretaceous Ocean-Climate System. Geological Society of America Special Paper 332:345–364.CrossRefGoogle Scholar
Hilting, A. K., Kump, L. R., and Bralower, T. J.. 2008. Variations in the oceanic vertical carbon isotope gradient and their implications for the Paleocene-Eocene biological pump. Paleoceanography 23:PA3222. doi: 10.1029/2007PA001458.CrossRefGoogle Scholar
Holland, S. M., and Patzkowsky, M. E.. 2002. Stratigraphic variation in the timing of first and last occurrences. Palaois 17:134146.2.0.CO;2>CrossRefGoogle Scholar
Huber, B. T., and Watkins, D. K.. 1992. Biogeography of Campanian-Maastrichtian calcareous plankton in the region of the Southern Ocean: paleogeographic and paleoclimatic implications. In J. P. Kennet and D. A. Warnke, eds. The Antarctic Paleoenvironment: A Perspective of Global Change. Antarctic Research Series 56:31–60.CrossRefGoogle Scholar
Hull, P. M., and Norris, R. D.. 2011. Diverse patterns of ocean export productivity change across the Cretaceous-Paleogene boundary: New insights from biogenic barium. Paleoceanography 26:PA3205. doi: 10.1029/2010PA002082.CrossRefGoogle Scholar
Hull, P. M., Norris, R. D., Bralower, T. J., and Schueth, J. D.. 2011. A role for chance in the marine recovery from the end-Cretaceous extinction. Nature Geoscience 4:856860.CrossRefGoogle Scholar
Jablonski, D. 1986. Causes and consequences of mass extinctions: a comparative approach. Pp. 183229in D. K. Elliot, ed. Dynamics of Extinction. Wiley, New York.Google Scholar
Jablonski, D 1998. Geographic variation in the molluscan recovery from the end-Cretaceous extinction. Science 279:13271330.CrossRefGoogle ScholarPubMed
Jablonski, D 2005. Mass extinctions and macroevolution. Paleobiology 31:192210.CrossRefGoogle Scholar
Jablonski, D 2008. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105(Suppl. 1), 1152811535.CrossRefGoogle ScholarPubMed
Jablonski, D., and Raup, D. M.. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389391.CrossRefGoogle ScholarPubMed
Jablonski, D., and Sepkoski, J. J. Jr. 1996. Paleobiology, community ecology, and scales of ecological pattern. Ecology 77:13671378.CrossRefGoogle ScholarPubMed
Jiang, S., Bralower, T. J., Patzkowsky, M. E., Kump, L. R., and Schueth, J. D.. 2010. Geographic controls on nannoplankton extinction across the Cretaceous/Paleogene boundary. Nature Geosciences 3:280285.CrossRefGoogle Scholar
Kaiho, K. 1994. Planktonic and benthic foraminiferal extinction events during the last 100 m.y. Palaeogeography, Palaeoclimatology, Palaeoecology 111:4571.CrossRefGoogle Scholar
Kring, D. A. 2007. The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 255:421.CrossRefGoogle Scholar
Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., and Wijbrans, J. R.. 2008. Synchronizing the rock clocks of Earth history. Science 320:500504.CrossRefGoogle ScholarPubMed
Lees, J. A. 2002. Calcareous nannofossil biogeography illustrates paleoclimate change in the Late Cretaceous Indian Ocean. Cretaceous Research 23:537634.CrossRefGoogle Scholar
MacLeod, K. G., Huber, B. T., and Fullagar, P. D.. 2001. Evidence for a small but resolvable increase in seawater 87Sr/86Sr ratios across the Cretaceous-Tertiary boundary. Geology 29:303306.2.0.CO;2>CrossRefGoogle Scholar
MacLeod, K. G., Whitney, D. L., Huber, B. T., and Koeberl, C.. 2007. Impact and extinction in remarkably complete Cretaceous-Tertiary boundary sections from Demerara Rise, tropical western North Atlantic. Geologic Society of America Bulletin 119:101115.CrossRefGoogle Scholar
Maechler, M., Rosseeuw, P., Struyf, A., Hubert, M., and Hornik, K.. 2012. Cluster: Cluster Analysis Basics and Extensions. R package version 1.14.3.Google Scholar
Mai, H., Speijer, R. P., and Schulte, P.. 2003. Calcareous index nannofossils (coccoliths) of the lowermost Paleocene originated in the late Maastrichtian. Micropaleontology 49:189195.CrossRefGoogle Scholar
Marshall, C. R., and Ward, P. D.. 1996. Sudden and gradual molluscan extinctions in the latest Cretaceous of western European Tethys. Science 274:13601363.CrossRefGoogle ScholarPubMed
Miller, K. G. 1982. Cenozoic benthic foraminifera: case histories of paleoceanographic and sea-level changes. In T. W. Broadhead, ed. Foraminifera: Notes for a Short Course, Studies in Geology, University of Tennessee 6:107–126.CrossRefGoogle Scholar
Minoletti, F., de Rafelis, M., Rendard, M., Gardin, S., and Young, J. R.. 2005. Changes in the pelagic fine fraction carbonate sedimentation during the Cretaceous-Paleocene transition: Contribution of the separation technique to the study of the Bidart section. Palaeogeography, Palaeoclimatology, Palaeoecology 216:119137.CrossRefGoogle Scholar
Molina, E., Arenillas, I., and Arz, J. A.. 1996. The Cretaceous/Tertiary boundary mass extinction in planktic foraminifera at Agost (Spain). Revue de Micropaléontologie 39:225243.CrossRefGoogle Scholar
Molina, E., Arenillas, I., and Arz, J. A.. 1998. Mass extinction in planktic foraminifera at the Cretaceous/Tertiary boundary in subtropical and temperate latitudes. Bulletin de la Société Géologique de France 169:351363.Google Scholar
Norris, R. D. 1996. Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera. Paleobiology 22:461480.CrossRefGoogle Scholar
Norris, R. D 2000. Pelagic species diversity, biogeography, and evolution. In D. H. Erwin, and S. L. Wing, eds. Deep Time: Paleobiology’s Perspective: Paleobiology 26 (Suppl. to No. 4):236–258.CrossRefGoogle Scholar
Norris, R. D., Huber, B. T., and Self-Trail, J.. 1999. Synchroneity of the K-T oceanic mass extinction and meteorite impact: Blake Nose, western North Atlantic. Geology 27:419422.2.3.CO;2>CrossRefGoogle Scholar
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H.. 2013. vegan: Community Ecology Package. R package version 2.0-7. http://CRAN.R-project.org/package=vegan.Google Scholar
Olsson, R. K., Hemleben, C., Berggren, W. A., and Huber, B. T.. 1999. Atlas of Paleocene planktonic foraminifera. Smithsonian Contributions to Paleobiology 25:252.Google Scholar
Patzkowsky, M. E., and Holland, S. M.. 2012. Stratigraphic Paleobiology: Understanding the Distribution of Fossil Taxa in Time and Space. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Perch-Nielsen, K. 1969. Die coccolithen einiger Dänischer Maastrichtien-und Danienlokalitäten. Bulletin of the Geological Society of Denmark 19:5169.Google Scholar
Perch-Nielsen, K 1985. Cenozoic calcareous nannofossils. Pp. 427554in H. M. Bolli, J. B. Saunders, and K. Perch-Nielsen, eds. Plankton Stratigraphy: Volume 1, Planktic Foraminifera, Calcareous Nannofossils and Calpionellids. Cambridge University Press, New York.Google Scholar
Perch-Nielsen, K., McKenzie, J. A., and He, Q.. 1982. Bio- and isotope-stratigraphy and the “catastrophic” extinction of calcareous nannoplankton at the Cretaceous/Tertiary boundary. Geologic Society of America Special Paper 190:353–371.CrossRefGoogle Scholar
Percival, S. F., and Fischer, A. G.. 1977. Changes in calcareous nannoplankton in the Cretaceous-Tertiary biotic crisis at Zumaya, Spain. Evolutionary Theory 2:135.Google Scholar
Pope, K. O. 2002. Impact dust not the cause of the Cretaceous-Tertiary mass extinction. Geology 30:99102.2.0.CO;2>CrossRefGoogle Scholar
Pope, K. O., Baines, H. K., Ocampo, A. C., and Ivanov, B. A.. 1997. Energy, volatile production, and climate effects of the Chicxulub Cretaceous/Tertiary impact. Journal of Geophysical Research 109:2164521664.CrossRefGoogle Scholar
Pospichal, J. J. 1994. Calcareous nannofossils at the K-T boundary, El Kef; no evidence for stepwise, gradual, or sequential extinctions. Geology 22:99102.2.3.CO;2>CrossRefGoogle Scholar
Pospichal, J. J 1995. Cretaceous/Tertiary boundary calcareous nannofossils from Agost, Spain. Pp. 185–218 in J. A. Flores, and F. J. Sierro, eds. Proceedings of the 5th International Nannoplankton Association Conference, Salamanca 1993.Google Scholar
Pospichal, J. J 1996. Calcareous nannofossils and clastic sediments at the Cretaceous-Tertiary boundary, northeastern Mexico. Geology 24:255258.2.3.CO;2>CrossRefGoogle Scholar
Pospichal, J. J., and Bralower, T. J.. 1992. Calcareous nannofossils across the Cretaceous/Tertiary boundary, Site 761, northwest Australian margin. In U. von Rad, B. U. Haq, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results 122:735–751.CrossRefGoogle Scholar
Pospichal, J.J., and Wise, S. W. Jr. 1990. Calcareous nannofossils across the K/T boundary, ODP Hole 690C, Maud Rise, Weddell Sea. In P. F. Barker, J. P. Kennett, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results 113:515–532.CrossRefGoogle Scholar
R Core Development Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/.Google Scholar
Raup, D. M. 1986. Biological extinction in earth history. Science 231:15281533.CrossRefGoogle ScholarPubMed
Raup, D. M., and Sepkoski, J. J.. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.CrossRefGoogle ScholarPubMed
Romein, A. J. T. 1977. Calcareous nannofossils from the Cretaceous/Tertiary boundary interval in the Barranco del Gredero (Caravaca, Prov. Murcia, S.E. Spain). II. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen B80:269–279.Google Scholar
Rosen, B. R., and Turnsek, D.. 1989. Extinction patterns and biogeography of scleractinian corals across the Cretaceous/Tertiary boundary. Fossil Cnidaria 5, Memoir of the Association of Australian Paleontologists 8:355370.Google Scholar
Rosenzweig, M. L., and McCord, R. D.. 1991. Incumbent replacement: evidence for long-term evolutionary progress. Paleobiology 17:202213.CrossRefGoogle Scholar
Sax, D. F., Stachowicz, J. J., Brown, J. H., Bruno, J. F., Dawson, M. N., Gaines, S. D., Grosberg, R. K., Hastings, A., Holt, R. D., Mayfield, M. M., O’Connor, M. I., and Rice, W. R.. 2007. Ecological and evolutionary insights from species invasions. TRENDS in Ecology and Evolution 22:465471.CrossRefGoogle ScholarPubMed
Schueth, J. D., Keller, K., Bralower, T. J., and Patzkowsky, M. E.. 2014. The Probable Datum Method (PDM): a technique for estimating the age of origination or extinction of nannoplankton. Paleobiolgy 40:541559.CrossRefGoogle Scholar
Schulte, P., Alegret, L., Arenillas., I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins, G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajales-Nishimura, J. M., Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W., Koeberl, C., Krink, D. A., MacLeod, K. G., Matsui, T., Melosh, J., Montanari, A., Morgan, J. V., Neal, C. R., Nichols, D. J., Norris, R. D., Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M., Uwe Reimold, W., Robin, E., Salge, T., Speijer, R. P., Sweet, A. R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M. T., and Willumsen, P. S.. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:12141218.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 1996. Competition in macroevolution. Pp. 211255. in D. Jablonski, D. H. Erwin, and J. E. Lipps, eds. Evolutionary Paleobiology. University of Chicago Press, Chicago.Google Scholar
Sepúlveda, J., Wendler, J. E., Summons, R. E., and Hinrichs, K.-.U.. 2009. Rapid resurgence of marine productivity after the Cretaceous-Paleogene mass extinction. Science 326:129132.CrossRefGoogle ScholarPubMed
Sessa, J. A., Bralower, T. J., Patzkowsky, M. E., Handley, J. C., and Ivany, L. C.. 2012. Environmental and biological controls on the diversity and ecology of Late Cretaceous through early Paleogene marine ecosystems in the U. S. Gulf Coastal Plain. Paleobiology 38:218239.CrossRefGoogle Scholar
Sexton, P. F., and Norris, R. D.. 2008. Dispersal and biogeography of marine plankton: long-distance dispersal of the foraminifer Truncorotalia truncatulinoides. Geology 36:899902.CrossRefGoogle Scholar
Sheehan, P. M. 2008. Did incumbency play a role in maintaining boundaries between Late Ordovician brachiopod realms? Lethaia 41:147153.CrossRefGoogle Scholar
Sheehan, P. M., and Hansen, T. A.. 1986. Detritus feeding as a buffer to extinction at the end of the Cretaceous. Geology 14:868870.2.0.CO;2>CrossRefGoogle Scholar
Sheehan, P. M., and Fastovsky, D. E.. 1992. Major extinctions of land-dwelling vertebrates at the Cretaceous-Tertiary boundary, eastern Montana. Geology 20:556560.2.3.CO;2>CrossRefGoogle Scholar
Sheehan, P. M., Coorough, P. J., and Fastovsky, D. E.. 1996. Biotic selectivity during the K/T and Late Ordovician extinction events. In G. Ryder, D. Fastovsky, and S. Gartner, eds. The Cretaceous-Tertiary Event and other Catastrophes in Earth History. Geological Society of America Special Paper 307:477–789.CrossRefGoogle Scholar
Sibert, E. C., Hull, P. M., and Norris, R. D.. 2014. Resilience of Pacific pelagic fish across the Cretaceous/Paleogene mass extinction. Nature Geosciences 7:667670.CrossRefGoogle Scholar
Sigurdsson, H., D’Hondt, S., and Carey, S.. 1992. The impact of the Cretaceous/Tertiary bolide on evaporate terrane and generation of major sulfuric acid aerosol. Earth and Planetary Science Letters 109:543559.CrossRefGoogle Scholar
Smit, J. 1982. Extinction and evolution of planktonic foraminifera at the Cretaceous/Tertiary boundary after a major impact. In L. T. Silver, and P. H. Schultz, eds. Geological implications of impacts of large asteroids and comets on the Earth. Geological Society of America Special Paper 190:329–352.CrossRefGoogle Scholar
Spieß, V. 1990. Cenozoic magnetostratigraphy of Leg 113 drill sites, Maud Rise, Weddell Sea, Antarctica. In P. F. Barker, J. P. Kennet, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results 113:261–315.Google Scholar
Stachowicz, J. J., and Tilman, D.. 2005. Species invasions and the relationships between species diversity, community saturation, and ecosystem functioning. Pp. 4164in D. F. Sax, J. S. Stachowicz, and S. D. Gaines, eds. Species Invasion: Insights into Ecology, Evolution and Biogeography. Sinauer, Sunderland, Mass.Google Scholar
Thierstein, H. R. 1981. Late Cretaceous nannoplankton and the change at the Cretaceous/Tertiary boundary. In J. E. Warme, et al., eds. The Deep Sea Drilling Project: A decade of progress. Society of Economic Paleontologists and Mineralogists Special Publication 32:355–394.CrossRefGoogle Scholar
Tillman, D. 2004. Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences USA 101:1085410861.CrossRefGoogle Scholar
Toon, O. B., Zahnle., K., Morrison, D., Turco, R. P., and Covey, C.. 1997. Environmental perturbations caused by the impacts of asteroids and comets. Reviews of Geophysics 35:4178.CrossRefGoogle Scholar
Vellekoop, J., Sluijs, A., Smit, J., Schouten, S., Weijers, J. W., Damsté, J. S. S., and Brinkhuis, H.. 2014. Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary. Proceedings of the National Academy of Sciences 111:75377541.CrossRefGoogle ScholarPubMed
Vermeij, G. J. 1991. When biotas meet: understanding biotic interchange. Science 253:10991104.CrossRefGoogle ScholarPubMed
Vermeij, G. J 2005. One-way traffic in the western Atlantic: causes and consequences of Miocene to early Pleistocene molluscan invasions in Florida and the Caribbean. Paleobiology 31:624642.CrossRefGoogle Scholar
Westerhold, T., Röhl, U., Raffi, I., Fornaciari, E., Monechi, S., Reale, V., Bowles, J., and Evans, H. F.. 2008. Astronomical calibration of Paleocene time. Palaeogeography, Palaeoclimatology, Palaeoecology 257:377403.CrossRefGoogle Scholar
Worsley, T., and Martini, E.. 1970. Late Maastrichtian nannoplankton provinces. Nature 225:12421243.CrossRefGoogle ScholarPubMed
Zachos, J. C., Arthur, M. A., and Dean, W. E.. 1989. Geochemical evidence for the suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337:6164.CrossRefGoogle Scholar