Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T09:12:14.628Z Has data issue: false hasContentIssue false

A review of the fossil seabirds from the Tertiary of the North Pacific: plate tectonics, paleoceanography, and faunal change

Published online by Cambridge University Press:  08 February 2016

Kenneth I. Warheit*
Affiliation:
Department of Ornithology and Mammalogy, California Academy of Sciences, Golden Gate Park, San Francisco, California 94118-4599

Abstract

Ecologists attempt to explain species diversity within Recent seabird communities in terms of Recent oceanographic and ecological phenomena. However, many of the principal oceanographic processes that are thought to structure Recent seabird systems are functions of geological processes operating at many temporal and spatial scales. For example, major oceanic currents, such as the North Pacific Gyre, are functions of the relative positions of continents and Antarctic glaciation, whereas regional air masses, submarine topography, and coastline shape affect local processes such as upwelling. I hypothesize that the long-term development of these abiotic processes has influenced the relative diversity and community composition of North Pacific seabirds. To explore this hypothesis, I divided the history of North Pacific seabirds into seven intervals of time. Using published descriptions, I summarized the tectonic and oceanographic events that occurred during each of these time intervals, and related changes in species diversity to changes in the physical environment. Over the past 95 years, at least 94 species of fossil seabirds have been described from marine deposits of the North Pacific. Most of these species are from Middle Miocene through Pliocene (16.0-1.6 Ma) sediments of southern California, although species from Eocene to Early Miocene (52.0-22.0 Ma) deposits are from Japan, British Columbia, Washington, and Oregon. During the history of the North Pacific seabirds, thee were many widespread (global) and local (California Current) oceanographic events, but the underlying physical processes that affected the diversity of seabirds throughout the North Pacific were tectonic changes that led to sequential stages of thermal isolation and refrigeration of Antarctica. Besides these broad-scale phenomena, the uplift of the Isthmus of Panama and the initiation and intensification of coastal upwelling in the California Current directly affected the diversity of seabirds in southern California. For the most part, Middle to Late Miocene and Pliocene seabird faunas from California resembled Recent communities, but with several exceptions: (1) the extreme diversity and abundance, but subsequent extinction of gannets (Morus) and flightless alcids (mancallids); (2) the comparatively low abundance and diversity of cormorants and shags (Phalacrocoracidae) until the Late Pliocene; and (3) the absence of marine Laridae until the Late Pliocene. By affecting both the physical and biological environments, geological factors such as Antarctic glaciation, eustatic changes in sea levels, and local tectonic activities influenced and will continue to influence the structure of seabird systems in the North Pacific.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Addicott, W. O. 1977. Neogene chronostratigarphy of nearshore marine basins of the eastern North Pacific. Pp. 151175in Saito, T. and Ujiie, H., eds. Proceedings of the First International Congress on Pacific Neogene Stratigraphy, Tokyo, 1976. Science Council of Japan, Tokyo.Google Scholar
Ainley, D. G. 1977. Feeding methods of seabirds: a comparison of polar and tropical communities. Pp. 669685in Llano, G. A., ed. Adaptations in Antarctic ecosystems. Gulf Publishing, Houston.Google Scholar
Ainley, D. G., and Boekelheide, R. J. 1984. An ecological comparison of oceanic seabird communities of the South Pacific Ocean. Studies in Avian Biology 8:223.Google Scholar
Ainley, D. G., and Boekelheide, R. J., eds. 1990. Seabirds of the Farallon Islands. Ecology, dynamics, and structure of an upwelling-system community. Stanford University Press, Stanford, Calif.Google Scholar
Ainley, D. G., and Lewis, T. J. 1974. The history of Farallon Island marine bird populations, 1854-1972. Condor 76:432446.CrossRefGoogle Scholar
Ainley, D. G., LeResche, R. E., and Sladen, W.J.L. 1983. Breeding biology of the Adelie Penguin. University of California Press, Berkeley.Google Scholar
Ainley, D. G., Carter, H. R., Anderson, D. W., Briggs, K. T., Coulter, M. C., Cruz, F., Cruz, J. B., Valle, C. A., Fefer, S. I., Hatch, S. A., Schreiber, E. A., Schreiber, R. W., and Smith, N. G. 1986. Effects of the 1982-83 El Nino-Southern Oscillation on Pacific Ocean bird populations. Pp. 17471758in Ouellet, H., ed. Acta XIX Congressus Internationalis Ornithologici. University of Ottawa Press, Ottawa.Google Scholar
Armentrout, J. M. 1981. Correlation and ages of Cenozoic chronostratigraphic units in Oregon and Washington. Pp. 137148in Armentrout, J. M., ed. Pacific Northwest Cenozoic biostratigraphy. Geological Society of America Special Paper 184.CrossRefGoogle Scholar
Armentrout, J. M., Hull, D. A., Beaulieu, J. D., and Rau, W. W. 1983. Correlation of the stratigraphic units in western Oregon and Washington. Oregon Department of Geology and Mineral Industries Oil and Gas Investigation 7:190.Google Scholar
Ashmole, N. P. 1971. Seabird ecology and the marine environment. Pp. 223286in Farner, D. S. and King, J. R., eds. Avian biology, Vol. 1. Academic Press, New York.Google Scholar
Barnes, L. G. 1976. Outline of Eastern North Pacific fossil cetacean assemblages. Systematic Zoology 25:321343.CrossRefGoogle Scholar
Barnes, L. G., Howard, H., Hutchison, J. H., and Welton, B. J. 1981. The vertebrate fossils of the marine Cenozoic San Mateo Formation at Oceanside, California. Pp. 5370in Abbott, P. L., and Shannon, O., eds. Geologic investigations of the San Diego Coastal Plain. San Diego Association of Geologists, San Diego, Calif.Google Scholar
Barron, J. A. 1986a. Updated diatom biostratigraphy for the Monterey Formation of California. Pp. 105119in Casey, R. E. and Barron, J. A., eds. Siliceous microfossil and microplankton of the Monterey Formation and modern analogs. The Pacific Section of the Society of Economic Paleontologists and Mineralogists, Los Angeles.Google Scholar
Barron, J. A. 1986b. Paleoceanographic and tectonic controls on deposition of the Monterey Formation and related siliceous rocks in California. Palaeogeography, Palaeoclimatology, Palaeoecology 53:2745.CrossRefGoogle Scholar
Barron, J. A., and Baldauf, J. G. 1989. Tertiary cooling steps and paleoproductivity as reflected by diatoms and biosiliceous sediments. Pp. 341354in Berger, W. H., Smetacek, V. S., and Wefer, G., eds. Productivity of the ocean: present and past. Wiley, Chichester.Google Scholar
Barron, J. A., and Keller, G. 1982. Widespread Miocene deep-sea hiatuses coincidence with periods of global cooling. Geology 10:577581.2.0.CO;2>CrossRefGoogle Scholar
Barron, J. A., and Keller, G. 1983. Paleotemperature oscillations in the Middle and Late Miocene of northeastern Pacific. Micropaleontology 29:150181.CrossRefGoogle Scholar
Barron, J. A., and Larsen, B. 1988. Early glaciation of Antarctica. Nature (London) 333:303304.Google Scholar
Becker, J. J. 1987. Neogene avian localities of North America. Smithsonian Research Monographs 1:1171.Google Scholar
Belopol'skii, L. O. 1961. Ecology of sea colony birds of the Barents Sea. Israel Program for Scientific Translations, Jerusalem.Google Scholar
Berger, W. H., Smetacek, V. S., and Wefer, G., eds. 1989. Productivity of the ocean: present and past. Wiley, Chichester.Google Scholar
Berggren, W. A., Kent, D. V., Flynn, J. J., and Van Couvering, J. A. 1985. Cenozoic geochronology. Geological Society of America Bulletin 96:14071418.2.0.CO;2>CrossRefGoogle Scholar
Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K. 1985. Plankton stratigraphy. Cambridge University Press, Cambridge.Google Scholar
Briggs, K. T., Tyler, W. B., Lewis, D. B., and Carlson, D. R. 1987. Bird communities at sea off California: 1975 to 1983. Studies in Avian Biology 11:iiv, 1-74.Google Scholar
Brown, R.G.B. 1980. Seabirds as marine mammals. Pp. 139in Burger, J., Olla, B. L., and Winn, H. E., eds. Behavior of marine animals, Vol. 4. Marine birds. Plenum Press, New York.Google Scholar
Chandler, R. M. 1990. Fossil birds of the San Diego Formation, Late Pliocene, Blancan, San Diego County, California. Ornithological Monographs 44:73161.CrossRefGoogle Scholar
Cody, M. L. 1989. Discussion: structure and assembly of communities. Pp. 227241in Roughgarden, J., May, R. M., and Levin, S. A., eds. Perspectives in ecological theory. Princeton University Press, Princeton, N.J.CrossRefGoogle Scholar
Connell, J. H. 1980. Diversity and coevolution of competitors, or the ghost of competition past. Oikos 35:131138.CrossRefGoogle Scholar
Cope, E.D. 1895. On Cyphornis, an extinct genus of birds. Journal of the Academy of Natural Sciences of Philadelphia. 2d Ser. 9:449452.Google Scholar
Coulson, J. C., and Thomas, C. S. 1985. Changes in the biology of the Kittiwake Rissi tridactyla: a 31-year study of a breeding colony. Journal of Animal Ecology 54:926.CrossRefGoogle Scholar
Deméré, T. A. 1983. The Neogene San Diego basin: a review of the marine Pliocene San Diego Formation. Pp. 187195in Larue, D. K., and Steel, R. J., eds. Cenozoic marine sedimentation Pacific Margin, U.S.A. Pacific Section of the Society of Economic Paleontologists and Mineralogists, Los Angeles.Google Scholar
Deméré, T. A., Roeder, M. A., Chandler, R. M., and Minch, J. A. 1984. Paleontology of the Middle Miocene Los Indios member of the Rosarito Beach Formation, northwestern Baja California, Mexico. Pp. 4756in Minch, J. A. and Ashby, J. R., eds. Miocene and Cretaceous depositional environments, Northwestern Baja California, Mexico. Pacific Section, American Association of Petroleum Geologists, Los Angeles.Google Scholar
Diamond, J. M., and Case, T. J., eds. 1986. Community ecology. Harper and Row, New York.Google Scholar
Domack, C. R. 1986. Reconstruction of the California Current at 5, 8, 10 million years B.P. using radiolarian indicators. Pp. 3954in Casey, R. E. and Barron, J. A., eds. Siliceous microfossil and microplankton of the Monterey Formation and modern analogs. Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles.Google Scholar
Drummond, J. M. 1979. Factors influencing the distribution and facies of Cenozoic marine sediments along the west coast of British Columbia, Canada. Pp. 5361in Armentrout, J. M., Cole, M. R., and TerBest, H. J., eds. Cenozoic paleogeography of the Western United States. Pacific Section of the Society of Economic Paleontologists and Mineralogists, Los Angeles.Google Scholar
Dubrovo, I. A. 1984. Miocene seals from the northwest Pacific region. Paleontological Journal 1984:5060.Google Scholar
Duffy, D. C. 1983. Competition for nesting space among Peruvian guano birds. Auk 100:680688.CrossRefGoogle Scholar
Duffy, D. C., Arntz, W. E., Serpa, H. T., Boersma, P. D., and Norton, R. L. 1986. A comparison of the effects of El Nino and the Southern Oscillation on birds in Peru and the Atlantic Ocean. Pp. 17401746in Ouellet, H., ed. Acta XIX Congressus International Ornithologici. University of Ottawa Press, Ottawa.Google Scholar
Duque-Caro, H. 1990. Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology 77:203234.CrossRefGoogle Scholar
Fowler, C. W., and MacMahon, J. A. 1982. Selective extinction and speciation: their influence on the structure and functioning of communities and ecosystems. American Naturalist 119:480498.CrossRefGoogle Scholar
Garrison, R. E., and Douglas, R. G., eds. 1981. The Monterey Formation and related siliceous rocks of California. Pacific Section of the Society of Economic Paleontologists and Mineralogists, Los Angeles.Google Scholar
Glantz, M. H., and Thompson, J. D., eds. 1981. Resource management and environmental uncertainty. Wiley, New York.Google Scholar
Glynn, P. W. 1988. El Niño-Southern Oscillation 1982-1983: nearshore population, community, and ecosystem responses. Annual Reviews of Ecology and Systematics 19:309345.CrossRefGoogle Scholar
Goedert, J. L. 1988. A new Late Eocene species of Plotopteridae (Aves: Pelecaniformes) from northwestern Oregon. Proceedings of the California Academy of Sciences 45:97102.Google Scholar
Goedert, J. L. 1989. Giant Late Eocene marine birds (Pelecaniformes: Pelagornithidae) from northwestern Oregon. Journal of Paleontology 63:939944.CrossRefGoogle Scholar
Haney, J. C. 1986. Seabird segregation at Gulf Stream frontal eddies. Marine Ecology Progress Series 28:279285.CrossRefGoogle Scholar
Haney, J. C. 1987. Effects of a Gulf Stream warm-core ring on summer seabird distribution in the northwest Atlantic Ocean. Limnology and Oceanography 32:665673.CrossRefGoogle Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science (Washington, D.C.) 235:11561167.CrossRefGoogle ScholarPubMed
Harrison, C.J.O., and Walker, C. A. 1976. A review of the bony-toothed birds (Odontopterygiformes): with descriptions of some new species. Tertiary Research Special Paper 2:162.Google Scholar
Harrison, P. 1983. Seabirds, an identification guide. Houghton Mifflin, Boston.Google Scholar
Hasegawa, Y. 1977. Early Neogene birds from Honshu and Kyushu, Japan. Pp. 340341in Saito, T. and Ujiie, H., eds. First International Congress on Pacific Neogene stratigraphy, Tokyo, 1976. Science Council of Japan, Tokyo.Google Scholar
Hatch, S. A. 1987. Did the 1982-1983 El Nino-Southern Oscillation affect seabirds of Alaska? Wilson Bulletin 99:468474.Google Scholar
Hodder, J., and Graybill, M. R. 1985. Reproduction and survival of seabirds in Oregon during the 1982-1983 El Nino. Condor 87:535541.CrossRefGoogle Scholar
Howard, H. 1949. New avian records of the Pliocene of California. Carnegie Institution of Washington Publication 584:177199.Google Scholar
Howard, H. 1957. A gigantic “toothed” marine bird from the Miocene of California. Santa Barbara Museum of Natural History, Department of Geology Bulletin 1:123.Google Scholar
Howard, H. 1958. Miocene sulids of southern California. Natural History Museum of Los Angeles County Contributions in Science 25:115.Google Scholar
Howard, H. 1966a. Additional avian records from the Miocene of Sharktooth Hill, California. Natural History Museum of Los Angeles County Contributions in Science 114:111.Google Scholar
Howard, H. 1966b. A possible ancestor of the Lucas Auk (Family Mancallidae) from the Tertiary of Orange County, California. Natural History Museum of Los Angeles County Contributions in Science 101:18.Google Scholar
Howard, H. 1968. Tertiary birds from Laguna Hills, Orange County, California. Natural History Museum of Los Angeles County Contributions in Science 142:121.Google Scholar
Howard, H. 1969. A new avian fossil from Kern County, California. Condor 71:6869.CrossRefGoogle Scholar
Howard, H. 1970. A review of the extinct genus, Mancalla. Natural History Museum of Los Angeles County Contributions in Science 203:112.Google Scholar
Howard, H. 1971. Pliocene avian remains from Baja California. Natural History Museum of Los Angeles County Contributions in Science 217:117.Google Scholar
Howard, H. 1972. Type specimens of avian fossils in the collections of the Natural History Museum of Los Angeles County. Natural History Museum of Los Angeles County Contributions in Science 228:127.Google Scholar
Howard, H. 1976. A new species of flightless auk from the Miocene of California (Alcidae: Mancallinae). Smithsonian Contributions to Paleobiology 27:141146.CrossRefGoogle Scholar
Howard, H. 1978. Late Miocene birds from Orange County, California. Natural History Museum of Los Angeles County Contributions in Science 290:126.Google Scholar
Howard, H. 1981. A new species of murre, genus Uria, from the Late Miocene of California (Aves: Alcidae). Bulletin of the Southern California Academy of Sciences 80:112.Google Scholar
Howard, H. 1982. Fossil birds from the Tertiary marine beds at Oceanside, San Diego County, California, with descriptions of two new species of the genera Uria and Cepphus (Aves: Alcidae). Natural History Museum of Los Angeles County Contributions in Science 341:115.Google Scholar
Howard, H. 1983. A list of the extinct fossil birds of California. Bulletin of the Southern California Academy of Sciences 82:111.Google Scholar
Howard, H. 1984. Additional records from the Miocene of Kern County, California with the description of a new species of fulmar (Aves: Procellariidae). Bulletin of the Southern California Academy of Sciences 83:8489.Google Scholar
Howard, H., and Barnes, L. G. 1987. Middle Miocene marine birds from the foothills of the Santa Ana Mountains, Orange County, California. Natural History Museum of Los Angeles County Contributions in Science 383:19.Google Scholar
Howard, H., and Waiter, S. L. 1969. A new species of bonytoothed bird (Family Pseudodontornithidae) from the Tertiary of New Zealand. Records of the Canterbury Museum 8:345357.Google Scholar
Howard, H., and White, J. A. 1962. A second record of Osteodontornis, Miocene “toothed” bird. Natural History Museum of Los Angeles County Contributions in Science 52:112.Google Scholar
Janzen, D.H., and Martin, P.S. 1982. Neotropical anachronisms: the fruits the gomphotheres ate. Science (Washington, D.C.) 215:1927.CrossRefGoogle ScholarPubMed
Keller, G., and Barron, J. A. 1981. Integrated planktic foraminiferal and diatom biochronology for the northeast Pacific and the Monterey Formation. Pp. 4354in Garrison, and Douglas, 1981.Google Scholar
Keller, G., and Barron, J. A. 1983. Paleoceanographic implications of Miocene deep-sea hiatuses. Geological Society of America Bulletin 94:590613.2.0.CO;2>CrossRefGoogle Scholar
Keller, G., and Barron, J. A. 1987. Paleodepth distribution of Neogene deep-sea hiatuses. Paleoceanography 2:697713.CrossRefGoogle Scholar
Livezey, B. C. 1988. Morphometrics of flightlessness in the Alcidae. Auk 105:681698.CrossRefGoogle Scholar
Livezey, B. C. 1989. Morphometric patterns in Recent and fossil penguins (Aves, Sphenisciforems). Journal of Zoology, London 219:269307.CrossRefGoogle Scholar
Lucas, F. A. 1901a. A flightless auk, Mancalla californiensis, from the Miocene of California. Proceeding of the United States National Museum 24:133143.CrossRefGoogle Scholar
Livezey, B. C. 1901b. A fossil, flightless auk. Science (Washington, D.C.) N.S. 13:428.Google Scholar
Miles, G. A. 1981. Planktonic foraminifers of the lower Tertiary Roseburg, Lookingglass, and Flournoy Formations (Umpqua Group), southwest Oregon. Pp. 85104in Armentrout, J. M., ed. Pacific Northwest Cenozoic biostratigraphy. Geological Society of America Special Paper 184. Geological Society of America, Boulder, Colo.CrossRefGoogle Scholar
Miller, A. H. 1931. An auklet from the Eocene of Oregon. University of California Publications, Bulletin of the Department of Geological Sciences 20:2326.Google Scholar
Miller, K. G., Fairbanks, R. G., and Mountain, G. S. 1987. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2:119.CrossRefGoogle Scholar
Miller, L. H. 1925. Avian remains from the Miocene of Lompoc, California. Carnegie Institution of Washington Publication 349:107117.Google Scholar
Miller, L. H. 1929. A new cormorant from the Miocene of California. Condor 31:167172.CrossRefGoogle Scholar
Miller, L. H. 1933. The Lucas Auk of California. Condor 35:3435.Google Scholar
Miller, L. H. 1935. New bird horizons in California. University of California Publications in Biological Sciences 1:7380.Google Scholar
Miller, L. H. 1937. An extinct puffin from the Pliocene of San Diego, California. Transactions of the San Diego Society of Natural History 8:375378.Google Scholar
Miller, L. H. 1946. The Lucas Auk appears again. Condor 48:3236.CrossRefGoogle Scholar
Miller, L. H. 1951. A Miocene petrel from California. Condor 53:7880.CrossRefGoogle Scholar
Miller, L. H. 1961. Birds from the Miocene of Sharktooth Hill, California. Condor 63:399402.CrossRefGoogle Scholar
Miller, L. H. 1962. A new albatross from the Miocene of California. Condor 64:471472.CrossRefGoogle Scholar
Miller, L. H., and Bowman, R. I. 1958. Further bird remains from the San Diego Pliocene. Natural History Museum of Los Angeles County Contributions in Science 20:315.Google Scholar
Miller, L. H., and Howard, H. 1949. The flightless Pliocene bird Mancalla. Carnegie Institution of Washington Publication 584:201228.Google Scholar
Obradovich, J. D., and Naeser, C. W. 1981. Geochronology bearing on the age of the Monterey Formation and siliceous rocks in California. Pp. 8795in Garrison, and Douglas, 1981.Google Scholar
Okazaki, Y. 1989. An occurrence of fossil bony-toothed bird (Odontopterygiformes) from the Ashiya Group (Oligocene), Japan. Bulletin of the Kitakyushu Museum of Natural History 9:123126.Google Scholar
Olson, S. L. 1980. A new genus of penguin-like Pelecaniform bird from the Oligocene of Washington (Pelecaniformes: Plotopteridae). Natural History Museum of Los Angeles County Contributions in Science 330:5157.Google Scholar
Olson, S. L. 1981. A third species of Mancalla from the Late Pliocene San Diego Formation of California (Aves: Alcidae). Journal of Vertebrate Paleontology 1:9799.CrossRefGoogle Scholar
Olson, S. L. 1985. The fossil record of birds. Pp. 79252in Farner, D. S., King, J. R., and Parkes, K. C., eds. Avian biology, Vol. VIII. Academic Press, Orlando, Fla.CrossRefGoogle Scholar
Olson, S. L., and Hasegawa, Y. 1979. Fossil counterparts of giant penguins from the North Pacific. Science (Washington, D.C.) 206:688689.CrossRefGoogle ScholarPubMed
Olson, S. L., and Hasegawa, Y. 1985. A femur of Plotopterum from the early Middle Miocene of Japan (Pelecaniformes: Plotopteridae). Bulletin of the National Science Museum, Ser. C 11:137140.Google Scholar
Ono, K. 1980. Pliocene tubinare bird from Kakegawa, Shizuoka Prefecture, Japan. Memoirs of the National Science Museum, Ser. C 13:2934. [In Japanese with English abstract.]Google Scholar
Ono, K. 1983. A Miocene bird (gannet) from Chichibu Basin, central Japan. Bulletin Saitama Museum of Natural History 1:1115. [In Japanese with English abstract.]Google Scholar
Ono, K. 1989. A bony-toothed bird from the Middle Miocene, Chichibu Basin, Japan. Bulletin of the National Science Museum, Ser. C 15:3338.Google Scholar
Pianka, E. R. 1983. Evolutionary ecology. Harper and Row, New York.Google Scholar
Pocklington, R. 1979. An oceanographic interpretation of seabird distributions in the Indian Ocean. Marine Biology 51:921.CrossRefGoogle Scholar
Raschke, R. E. 1984. Early and Middle Miocene vertebrates from the Santa Ana Mountains, California. Pp. 6167in Butler, B., Gant, J., and Stadum, C., eds. The Natural Sciences of Orange County. Memoirs of the Natural History Foundation of Orange County, Newport Beach, Calif.Google Scholar
Rea, D. K., Zachos, J. C., Owen, R. M., and Gingerich, P. D. 1990. Global change at the Paleocene-Eocene boundary: climate and evolutionary consequences of tectonic events. Paleogeography, Palaeoclimatology, Palaeoecology 79:117128.CrossRefGoogle Scholar
Repenning, C. A., and Tedford, R. H. 1977. Otarioid seals of the Neogene. United States Geological Survey Professional Paper 992.CrossRefGoogle Scholar
Richdale, L. E. 1957. A population study of penguins. Oxford University Press, London.Google Scholar
Ricklefs, R. E. 1973. Ecology. Chiron, Newton, Mass.Google Scholar
Roughgarden, J. 1989. The structure and assembly of communities. Pp. 203226in Roughgarden, J., May, R. M., and Levin, S. A., eds. Perspectives in ecological theory. Princeton University Press, Princeton, N.J.CrossRefGoogle Scholar
Ruddiman, W. F., and Kutzbach, J. E. 1989. Forcing of late Cenozoic North Hemipshere climate by plateau uplift in southern Asia and the American West. Journal of Geophysical Research 94:1840918427.CrossRefGoogle Scholar
Savin, S. M., Douglas, R. G., and Stehli, F. G. 1975. Tertiary marine paleotemperatures. Geological Society of America Bulletin 86:14991510.2.0.CO;2>CrossRefGoogle Scholar
Schreiber, R. W., and Schreiber, E. A. 1984. Central Pacific seabirds and the El Niño-Southern Oscillation: 1982-1983 perspectives. Science (Washington, D.C.) 225:713719.CrossRefGoogle ScholarPubMed
Siegel-Causey, D. 1988. Phylogeny of the Phalacrocoracidae. Condor 90:885905.CrossRefGoogle Scholar
Storer, R. W. 1960. Evolution in the diving birds. Pp. 694707in Bergman, G., Donner, K. O., and Haartman, L. v., eds. Proceedings of the XII International Ornithological Congress, Helsinki, June 5-12, 1958. International Ornithological Congress, Helsinki.Google Scholar
Swisher, C. C. III, and Prothero, D. R. 1990. Single-crystal 40Ar/39Ar dating of the Eocene-Oligocene transition on North America. Science (Washington, D.C.) 249:760762.CrossRefGoogle ScholarPubMed
Takeyama, K.-I., and Ozawa, T. 1984. A new Miocene otarioid seal from Japan. Proceedings of the Japan Academy, Ser. B 60:3639.CrossRefGoogle Scholar
Tedford, R. H., Skinner, M. F., Fields, R. W., Rensberger, J. M., Whistler, D. P., Galusha, T., Taylor, B. E., MacDonald, J. R., and Webb, S. D. 1987. Faunal succession and biochronology of the Arikareean through Hemphillian interval (Late Oligocene through earliest Pliocene) in North America. Pp. 153211in Woodburne, M. O., ed. Cenozoic mammals of North America geochronology and biostratigraphy. University of California Press, Berkeley.Google Scholar
Van Devender, T. R. 1986. Climatic cadences and the composition of Chihuahuan Desert communities: the Late Pleistocene packrat midden record. Pp. 285299in Diamond, J., and Case, T. J., eds. Community ecology. Harper and Row, New York.Google Scholar
Vermeij, G. J. 1989. Geographical restriction as a guide to the causes of extinction: the case of the cold northern oceans during the Neogene. Paleobiology 15:335356.CrossRefGoogle Scholar
Vrba, E. S., and Gould, S. J. 1986. The hierarchical expansion of sorting and selection: sorting and selection cannot be equated. Paleobiology 12:217228.CrossRefGoogle Scholar
Warheit, K. I. 1990. The phylogeny of the Sulidae (Aves: Pelecaniformes) and the morphometry of flight-related structures in seabirds: a study of adaptation. Unpublished Ph.D. dissertation, University of California, Berkeley.Google Scholar
Warheit, K. I., and Lindberg, D. R. 1988. Interactions between seabirds and marine mammals through time: interference competition at breeding sites. Pp. 292328in Burger, J., ed. Seabirds and other marine vertebrates: competition, predation, and other interactions. Columbia University Press, New York.Google Scholar
Weaver, F. M., Casey, R. E., and Perez, A. M. 1981. Stratigraphic and paleoceanographic significance of Early Pliocene to Middle Miocene radiolarian assemblages from Northern to Baja California. Pp. 7186in Garrison, and Douglas, 1981.Google Scholar
Wetmore, A. 1928. The systematic position of the fossil bird Cyphornis magnus. Canada Department of Mines. Geological Survey Bulletin 49:14.Google Scholar
Wetmore, A. 1930. Fossil bird remains from the Temblor Formation near Bakersfield, California. Proceedings of the California Academy of Sciences 19:8593.Google Scholar
Woodburne, M. O., ed. 1987. Cenozoic mammals of North America: geochronology and biostratigraphy University of California Press, Berkeley.Google Scholar
Woodruff, F., and Savin, S. 1989. Miocene deepwater oceanography. Paleoceanography 4:87140.CrossRefGoogle Scholar
Woodruff, F., Savin, S. M., and Douglas, R. G. 1981. Miocene stable isotope record: a detailed deep Pacific ocean study and its paleoclimatic implications. Science (Washington, D.C.) 212:665668.CrossRefGoogle ScholarPubMed
Zusi, R. L., and Warheit, K. I. 1992. Evolution of the intramandibular joint of pseudodontorns. Pp. 351360in Campbell, K. E. Jr., ed. Papers in avian paleontology honoring Pierce Brodkorb. Science Series, no. 36. Natural History Museum of Los Angeles County, Los Angeles, Calif.Google Scholar