Skip to main content Accessibility help
×
×
Home

Phanerozoic trends in brachiopod body size from synoptic data

  • Zixiang Zhang (a1), Michael Augustin (a2) and Jonathan L. Payne (a1)

Abstract

Body size is one of the most studied phenotypic attributes because it is biologically important and easily measured. Despite a long history of study, however, the pattern of body-size change in diverse higher taxa over the Phanerozoic remains largely unknown because few relevant data sets span more than a single geological period or provide comprehensive, global coverage. In this study, we measured representative specimens of 3414 brachiopod genera illustrated in the Treatise on Invertebrate Paleontology. We applied these size data to stage-resolved stratigraphic ranges from the Treatise and the Paleobiology Database to develop a Phanerozoic record of trends in brachiopod size. Using a model comparison approach, we find that temporal variation in brachiopod size exhibits two distinct modes—a Paleozoic mode of size increase and a post-Paleozoic mode indistinguishable from a random walk. This transition reflects a change in the identities of the most diverse brachiopod orders rather than a shift in mode within any given order. Paleozoic size increase reflects a small, persistent bias toward the origination of new genera larger than those surviving from the previous stage and is identifiable as a statistically supported trend in three orders representing both Class Strophomenata (Order Productida) and Class Rhynchonellata (orders Atrypida and Spiriferida). Extinction exhibits no consistent bias with respect to size. The shift in evolutionary mode across the end-Permian mass extinction adds to long-standing evidence from studies of diversity and abundance that this biotic catastrophe suddenly and permanently altered the evolutionary history of what was, until that time, the most diverse animal phylum on Earth.

Copyright

Corresponding author

Footnotes

Hide All

Deceased

Footnotes

References

Hide All
Akaike, H. 1974. New look at statistical-model identification. IEEE Transactions on Automatic Control AC19:716723.
Alroy, J. 1998. Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731734.
Arnold, A. J., Kelley, D. C., and Parker, W. C.. 1995. Causality and Cope’s Rule: evidence from the planktonic foraminifera. Journal of Paleontology 69:203210.
Bambach, R. K. 1999. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32:131144.
Bell, M. A., and Braddy, S. J.. 2012. Cope’s rule in the Ordovician trilobite family Asaphidae (order Asaphida): patterns across multiple most parsimonious trees. Historical Biology 24:223230.
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago.
Calder, W. A. III. 1984. Size, function and life history. Harvard University Press, Cambridge.
Cherns, L., and Wright, V. P.. 2000. Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology 28:791794.
Cherns, L., and Wright, V. P.. 2009. Quantifying the impacts of early diagenetic aragonite dissolution on the fossil record. Palaios 24:756771.
Clapham, M. E., and Bottjer, D. J.. 2007. Prolonged Permian-Triassic ecological crisis recorded by molluscan dominance in Late Permian offshore assemblages. Proceedings of the National Academy of Sciences USA 104:1297112975.
Clapham, M. E., Shen, S., and Bottjer, D. J.. 2009. The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology 35:3250.
Dahl, T. W., Hammarlund, E. U., Anbar, A. D., Bond, D. P. G., Gill, B. C., Gordon, G. W., Knoll, A. H., Nielsen, A. T., Schovsbo, N. H., and Canfield, D. E.. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences USA 107:1791117915.
Dommergues, J. L., Montuire, S., and Neige, P.. 2002. Size patterns through time: the case of the Early Jurassic ammonite radiation. Paleobiology 28:423434.
Erwin, D. H. 1993. The great Paleozoic crisis: life and death in the Permian. Princeton University Press, Princeton, N.J.
Fraiser, M. L., and Bottjer, D. J.. 2004. The non-actualistic Early Triassic gastropod fauna: a case study of the Lower Triassic Sinbad Limestone Member. Palaios 19:259275.
Fraiser, M. L., and Bottjer, D. J.. 2007. When bivalves took over the world. Paleobiology 33:397413.
Gould, S. J., and Calloway, C. B.. 1980. Clams and brachiopods: ships that pass in the night. Paleobiology 6:383396.
Gradstein, F. M., Ogg, J. G., and van Kranendonk, M.. 2008. On the geologic time scale 2008. Newsletters on Stratigraphy 43:513.
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578601.
Hunt, G. 2011. paleoTS: analyze paleontological time series. R package version 0:4–1. http://CRAN.R-project.org/package=paleoTS. Accessed 1 July 2011.
Hunt, G., and Roy, K.. 2006. Climate change, body-size evolution, and Cope’s Rule in deep-sea ostracodes. Proceedings of the National Academy of Sciences USA 103:13471352.
HuntG., S. A. Wicaksono G., S. A. Wicaksono, Brown, J. E., and Macleod, K. G.. 2010. Climate-driven body-size trends in the ostracod fauna of the deep Indian Ocean. Palaeontology 53:12551268.
Jablonski, D. 1996. Body size and macroevolution. Evolutionary paleobiology, 256289.
Jablonski, D. 1997. Body-size evolution in Cretaceous molluscs and the status of Cope’s rule. Nature 385:250252.
Kidwell, S. M., and Brenchley, P. J.. 1994. Patterns in bioclastic accumulation through the Phanerozoic: changes in input or in destruction? Geology 32:11391143.
Kingsolver, J. G., and Pfennig, D. W.. 2004. Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution 58:16081612.
Kosnik, M. A., Jablonski, D., Lockwood, R., and Novack-Gottshall, P. M.. 2006. Quantifying molluscan body size in evolutionary and ecological analyses: maximizing the return on data-collection efforts. Palaios 21:588597.
Kosnik, M. A., Alroy, J., Behrensmeyer, A. K., Fürsich, F. T., Gastaldo, R. A., Kidwell, S. M., Kowalewski, M., Plotnick, R. E., Rogers, R. R., and Wagner, P. J.. 2011. Changes in shell durability of common marine taxa through the Phanerozoic: evidence for biological rather than taphonomic drivers. Paleobiology 37:303331.
Krause, R. A. Jr., Stempien, J. A., Kowalewski, M., and Miller, A. I.. 2007. Body size estimates from the literature: utility and potential for macroevolutionary studies. Palaios 22:6073.
Marshall, C. R. 2006. Explaining the Cambrian “explosion” of animals. Annual Review of Earth and Planetary Sciences 34:355384.
Martin, R. E. 1996. Secular increase in nutrient levels through the Phanerozoic: implications for productivity, biomass, and diversity of the marine biosphere. Palaios 11:209219.
Martin, R. E., and Quigg, A.. 2012. Evolving phytoplankton stoichiometry fueled diversification of the marine biosphere. Geosciences 2:130146.
McShea, D. W. 1994. Mechanisms of large-scale evolutionary trends. Evolution 48:17471763.
Newell, N. D. 1949. Phyletic size increase, an important trend illustrated by fossil invertebrates. Evolution 3:103124.
Nicol, D. 1966. Cope’s rule and Precambrian and Cambrian invertebrates. Journal of Paleontology 40:13971399.
Novack-Gottshall, P. M. 2006. Ecosystem-wide body-size trends in Cambrian–Devonian marine invertebrate lineages. Paleobiology 34:210228.
Novack-Gottshall, P. M. 2008. Using simple body-size metrics to estimate fossil body volume: empirical validation using diverse paleozoic invertebrates. Palaios 23:163173.
Novack-Gottshall, P. M., and Lanier, M. A.. 2008. Scale-dependence of Cope’s rule in body-size evolution of Paleozoic brachiopods. Proceedings of the National Academy of Sciences USA 105:54305434.
Payne, J. L. 2005. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology 31:269290.
Payne, J. L., and Clapham, M. E.. 2012. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annual Review of Earth and Planetary Sciences 40:89111.
Payne, J. L., Boyer, A. G., Brown, J. H., Finnegan, S., Kowalewski, M., Krause, R. A. Jr., Lyons, S. K., McClain, C. R., McShea, D. W., Novack-Gottshall, P. M., Smith, F. A., Stempien, J. A., and Wang, S. C.. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings of the National Academy of Sciences USA 106:2427.
Payne, J. L., Groves, J. R., Jost, A. B., Nguyen, T., Moffitt, S. E., Hill, T. M., and Skotheim, J. M.. 2012. Late Paleozoic fusulinoidean gigantism driven by atmospheric hyperoxia. Evolution 66:29292939.
Payne, J. L., Heim, N. A., Knope, M. L., and McClain, C. R.. 2014. Metabolic dominance of bivalves predates brachiopod diversity decline by more than 150 million years. Proceedings of the Royal Society of London B 281:20133122.
Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press, New York.
R Development Core Team. 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.
Rego, B. L., Wang, S. C., Altiner, D., and Payne, J. L.. 2012. Within- and among-genus components of size evolution during mass extinction, recovery, and background intervals: a case study of Late Permian through Middle Triassic foraminifera. Paleobiology 38:627643.
Schmidt-Nielsen, K. 1984. Scaling: why is animal size so important?. Cambridge University Press, Cambridge.
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:3653.
Sepkoski, J. J. Jr. 1996. Competition in macroevolution: the double wedge revisited. Pp. 211255in D. Jablonski, D. H. Erwin, and J. H. Lipps, eds. Evolutionary paleobiology. University of Chicago Press, Chicago.
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 364:1560.
Sepkoski, J. J. Jr., and Miller, A. I.. 1985. Evolutionary faunas and the distribution of Paleozoic marine communities in space and time. Pp. 153190in J. W. Valentine, ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.
Smith, A. B., and Jeffery, C. H.. 1998. Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392:6971.
Sperling, E. A., Frieder, C. A., Raman, A. V., Girguis, P. R., Levin, L. A., and Knoll, A. H.. 2013. Oxygen, ecology, and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences USA 110:1344613451.
Stanley, S. M. 1973a. Explanation for Cope’s Rule. Evolution 27:126.
Stanley, S. M. 1973b. An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proceedings of the National Academy of Sciences USA 70:14861489.
Trammer, J. 2005. Maximum body size in a radiating clade as a function of time. Evolution 59:941947.
Trammer, J., and Kaim, A.. 1997. Body size and diversity exemplified by three trilobite clades. Acta Palaeontologica Polonica 42:112.
Twitchett, R. J. 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology 252:132144.
Twitchett, R. J., and Oji, T.. 2005. Early Triassic recovery of echinoderms. Comptes Rendus Palevol 4:531542.
Vermeij, G. J. 1995. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology 21:125152.
Vermeij, G. J. 2004. Nature: an economic history. Princeton University Press, Princeton, N.J.
Wagner, P. J., Kosnik, M. A., and Lidgard, S.. 2006. Abundance distributions imply elevated compexity of post-Paleozoic marine ecosystems. Science 314:12891292.
Williams, A., Brunton, C. H. C., and Carlson, S. J. eds. 1997. Brachiopoda 1, Introduction. Part H of R. L. Kaesler, ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.
Williams, A., Brunton, C. H. C., and Carlson, S. J. eds. 2000a. Brachiopoda 2, Linguliformea, Craniiformea, and Rhynchonelliformea (part). Part H of R. L. Kaesler, ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.
Williams, A., Brunton, C. H. C., and Carlson, S. J. eds. 2000b. Brachiopoda 3, Linguliformea, Craniiformea, and Rhynchonelliformea (part). Part H of R. L. Kaesler, ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.
Williams, A., Brunton, C. H. C., and Carlson, S. J. eds. 2000c. Brachiopoda 4, Rhynchonelliformea (part). Part H of R. L. Kaesler, ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.
Williams, A., Brunton, C. H. C., and Carlson, S. J. eds. 2006. Brachiopoda 5, Rhynchonelliformea (part). Part H of R. L. Kaesler, ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.
Williams, A., Brunton, C. H. C., and Carlson, S. J. eds. 2007. Brachiopoda 6, Supplement. Part H of P. A. Selden, ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.
Wright, V. P., Cherns, L., and Hodges, P.. 2003. Missing molluscs: filed testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology 31:211214.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Paleobiology
  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed