Skip to main content Accessibility help
×
×
Home

Paleontological data and molecular phylogenetic analysis

  • Andrew B. Smith (a1) and D. T. J. Littlewood (a1)

Abstract

Molecular data are becoming an indispensable tool for the reconstruction of phylogenies. Fossil molecular data remain scarce, but have the potential to resolve patterns of deep branching and provide empirical tests of tree reconstruction techniques. A total evidence approach, combining and comparing complementary morphological, molecular and stratigraphical data from both recent and fossil taxa, is advocated as the most promising way forward because there are several well-established problems that can afflict the analysis of molecular sequence data sometimes resulting in spurious tree topologies. The integration of evidence allows us to: (1) choose suitable taxa for molecular phylogenetic analysis for the question at hand; (2) discriminate between conflicting hypotheses of taxonomic relationship and phylogeny; (3) evaluate procedures and assumptions underlying methods of building trees; and (4) estimate rates of molecular evolution in the geological past. Paleontology offers a set of independent data for comparison and corroboration of analyses and provides the only direct means of calibrating molecular trees, thus giving insight into rates of molecular evolution in the geological past.

Copyright

References

Hide All
Allard, M. W., and Miyamoto, M. M. 1992. Perspective: testing phylogenetic approaches with empirical data, as illustrated with the parsimony method. Molecular Biology and Evolution 9:778786.
Ax, P. 1987. The phylogenetic system: the systematization of organisms on the basis of their phylogenesis, transl. Jefferies, R. P. S.John Wiley and Sons, London.
Ballard, J. W., Olsen, G. J., Faith, D. P., Odgers, W. A., Rowell, D. M., and Atkinson, P. W. 1992. Evidence from 12S ribosomal RNA sequences that onycophorans are modified arthropods. Science 258:13451348.
Barrett, M., Donoghue, M. J., and Sober, E. 1991. Against consensus. Systematic Zoology. 40:486493.
Bowman, B. H., Taylor, J. W., Brownlee, A. G., Lee, J., Lu, S.-D., and White, T. J. 1992. Molecular evolution of the Fungi: relationships of the Basidiomycetes, Ascomycetes and Chytridiomycetes. Molecular Biology and Evolution 9:285296.
Briggs, D., and Kay, L. 1990. Biomolecular palaeontology. Natural Environment Research Council News, July pp. 1114.
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992. Morphological disparity in the Cambrian. Science 256:16701673.
Cano, R. J., Poinar, H. N., and Poinar, G. O. 1992. Isolation and partial characterization of DNA from the bee Proplebeia dominicana (Apidae: Hymenoptera) in 25-40 million year old amber. Medical Science Research 20:249251.
Cano, R. J., Poinar, H. N., Pieniazek, N. J., Acra, A., and Poinar, G. O. 1993. Amplification and sequencing of DNA from a 120-135 million-year-old weevil. Nature (London) 363:536538.
Collins, M., Curry, G. B., Muyzer, G., Quinn, R., Xu, S., Westbroek, P., and Ewing, S. 1991. Immunological investigations of relationships within terebratulid brachiopods. Palaeontology 34:785796.
Campbell, K. S. W., and Marshall, C. R. 1987. Rates of evolution among Palaeozoic echinoderms. Pp. 61100in Campbell, K. S. W. and Day, M. F., eds. Rates of evolution. Allen and Unwin, London.
Cracraft, J., and Helm-Bychowski, K. 1991. Parsimony and phylogenetic inference using DNA sequences: some methodological strategies. Pp. 184220in Miyamoto, and Cracraft, 1991.
DeBry, R. W. 1992. The consistency of several phylogenetic-inference methods under varying evolutionary rates. Molecular Biology and Evolution 9:537551.
DeSalle, R., Gatesy, J., Wheeler, W., and Grimaldi, D. 1992. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science 257:19331936.
Donoghue, M., Doyle, J., Gauthier, J., Kluge, A., and Rowe, T. 1989. The importance of fossils in phylogenetic reconstruction. Annual Reviews in Ecology and Systematics 20:431460.
Doyle, J., and Donoghue, M. 1987. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Botanical Reviews 52:321431.
Eglinton, G., and Logan, G. A. 1991. Molecular preservation. Philosophical Transactions of the Royal Society, London B 333:315328.
Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27:401410.
Felsenstein, J. 1988. Phylogenies from molecular sequences: inference and reliability. Annual Reviews of Genetics 22:521565.
Fernholm, B., Bremer, K., and Jornvall, H., eds. 1989. The hierarchy of life. Excerpta Medica, Amsterdam.
Gauthier, J., Kluge, A. G., and Rowe, T. 1988. Amniote phylogeny and the importance of fossils. Cladistics 4:105210.
Golenberg, E. M. 1991. Amplification and analysis of Miocene plant fossil DNA. Philosophical Transactions of the Royal Society, London B 333:419427.
Golenberg, E. M., Giannassi, D. E., Clegg, M. T., Smiley, C. J., Durbin, M., Henderson, D., and Zurawski, G. 1990. Choroplast DNA sequence from a Miocene Magnolia species. Nature (London) 344:656658.
Goodman, M. 1989. Emerging alliance of phylogenetic systematics and molecular biology: a new age of exploration. Pp. 4361in Fernholm, et al. 1989.
Gould, S. J. 1992. Magnolias from Moscow. Natural History 9/92:1018.
Graur, D. 1993. Molecular phylogeny and the higher classification of eutherian mammals. Trends in Ecology and Evolution 8:141147.
Hagelberg, E., Bell, L. S., Allen, T., Boyde, A., Jones, S. J., and Clegg, J. B. 1991. Analysis of ancient bone DNA: techniques and applications. Philosophical Transactions of the Royal Society, London B 333:399407.
Hasegawa, M., Kishino, H., and Yano, T. 1985. Dating of the human-ape splitting by a molecular clock. Journal of Molecular Evolution 22:160174.
Hey, J. 1992. Using phylogenetic trees to study speciation and extinction. Evolution 46:627640.
Hedges, S. B., and Maxson, L. R. 1992. 18S rRNA sequences and amniote phylogeny: reply to Marshall. Molecular Biology and Evolution 9:374377.
Hedges, S. B., Moberg, K. D., and Maxson, L. R. 1990. Tetrapod phylogeny inferred from 18S and 28S ribosomal RNA sequences and a review of the evidence for amniote relationships. Molecular Biology and Evolution 7:607633.
Higuchi, R., Bowman, B., Friedburger, M., Ryder, O. A., and Wilson, A. C. 1984. DNA sequences from the quagga, an extinct member of the horse family. Nature (London) 312:282284.
Hillis, D. M. 1991. Discriminating between phylogenetic signal and random noise in DNA sequences. Pp. 278294in Miyamoto, and Cracraft, 1991.
Hillis, D. M., and Dixon, M. T. 1989. Vertebrate phylogeny: evidence from 28S ribosomal DNA sequences. Pp. 355367in Fernholm, et al. 1989.
Hillis, D. M., Bull, J. J., White, M. E., Badgett, M. R., and Molineux, I. J. 1992. Experimental phylogenetics: generation of a known phylogeny. Science 255:589592.
Huelsenbeck, J. P. 1991. When are fossils better than extant taxa in phylogenetic analysis? Systematic Zoology 40:458469.
Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111120.
Kluge, A. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Zoology 38:725.
Krajewski, C. 1989. Phylogenetic relationships amongst cranes (Gruiformes: Gruidae) based on DNA hybridization. The Auk 106:603618.
Kraus, F., and Miyamoto, M. M. 1991. Rapid cladogenesis among the pecoran ruminants: evidence from mitochondrial sequences. Systematic Zoology 40:117130.
Lanyon, S. M. 1988. The stochastic mode of molecular evolution: what consequences for systematic investigations? The Auk 105:565573.
Larson, A., Kirk, M. M., and Kirk, D. L. 1992. Molecular phylogeny of the volvocine flagellates. Molecular Biology and Evolution 9:85105.
Li, P., and Bousquet, J. 1992. Relative-rate test for nucleotide substitutions between two lineages. Molecular Biology and Evolution 9:11851189.
Lowenstein, J. M., Sarich, V. M., and Richardson, B. J. 1981. Albumin systematics of the extinct mammoth and Tasmanian wolf. Nature (London) 291:409411.
Marshall, C. R. 1992. Substitution bias, weighted parsimony and amniote phylogeny as inferred from 18S rRNA sequences. Molecular Biology and Evolution 9:370373.
Marshall, C. R., and Schultze, H.-P. 1992. Relative importance of molecular, neontological and paleontological data in understanding the biology of the vertebrate invasion of land. Journal of Molecular Evolution. 35:93101.
Marshall, C. R., and Swift, H. 1992. DNA-DNA hybridization phylogeny of sand dollars and highly reproducible extent of hybridization values. Journal of Molecular Evolution 34:3144.
Meyer, A., and Dolven, S. I. 1992. Molecules, fossils and the origin of tetrapods. Journal of Molecular Evolution 35:102113.
Meyer, A., and Wilson, A. C. 1990. Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. Journal of Molecular Evolution 31:359364.
Mickevich, M. F. 1978. Taxonomic congruence. Systematic Zoology 27:143158.
Miyamoto, M. M., and Cracraft, J., eds. 1991. Phylogenetic analysis of DNA sequences. Oxford University Press.
Miyamoto, M. M., and Cracraft, J., eds. 1991. Phylogenetic inference, DNA sequence analysis, and the future of molecular systematics. Pp. 317in Miyamoto, and Cracraft, 1991.
Miyamoto, M. M., and Goodman, M. 1990. DNA systematics and evolution revealed from molecular phylogenies. Annual Reviews in Ecology and Systematics 21:197220.
Mooi, R. 1990. Paedomorphosis, Aristotle's lantern, and the origin of the sand dollars (Echinodermata: Clypeasteroida). Paleobiology 16:2548.
Nee, S., Moors, A. Ø., and Harvey, P. H. 1992. Tempo and mode of evolution revealed from molecular phylogenies. Proceedings of the National Academy of Sciences, U.S.A. 89:83228326.
Nei, M. 1991. Relative efficiencies of different tree-making methods for molecular data. Pp. 90128in Miyamoto, and Cracraft, 1991.
Nelson, G., and Platnick, N. 1981. Systematics and biogeography: cladistics and vicariance. Columbia University Press, New York.
Norrell, M. A. 1992. Taxic origin and temporal diversity: the effect of phylogeny. Pp. 89118in Novacek, and Wheeler, 1992.
Novacek, M. J. 1988. The major groups of Eutherian mammals. Pp. 3171in Benton, M., ed. The phylogeny and classification of tetrapods, Vol. 2; Mammals. Clarendon Press, Oxford.
Novacek, M. J. 1992a. Fossils, topologies, missing data and the higher level phylogeny of Eutherian mammals. Systematic Biology 41:5873.
Novacek, M. J. 1992b. Fossils as critical data for phylogeny. Pp. 4688in Novacek, and Wheeler, 1992.
Novacek, M. J. 1992c. Mammalian phylogeny: shaking the tree. Nature (London) 356:121125.
Novacek, M. J., and Wheeler, Q. D., eds. 1992. Extinction and phylogeny. Columbia University Press, New York.
Pääbo, S. 1985. Molecular cloning of ancient Egyptian mummy DNA. Nature (London) 314:644645.
Pääbo, S. 1989. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proceedings of the National Academy of Sciences, U.S.A. 86:19391943.
Pääbo, S., Gifford, J. A., and Wilson, A. C. 1991. Mitochondrial DNA sequences from a 7000-year-old brain. Nucleic Acids Research 16:97759787.
Patterson, C. 1981. Significance of fossils in determining evolutionary relationships. Annual Reviews in Ecology and Systematics 12:195223.
Penny, D., and Hendy, M. D. 1986. Estimating the reliability of evolutionary trees. Molecular Biology and Evolution 3:403417.
Poinar, H. N., Cano, R. J., and Poinar, G. O. 1993. DNA from an extinct plant. Nature (London) 363:677,
Rohlf, F. J., Chang, W. S., Sokal, R. R., and Kim, J.-Y. 1990. Accuracy of estimated phylogenies: effects of tree topology and evolutionary model. Evolution 44:16711684.
Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R. G., Horn, G. T., Mullis, K. B., and Erlich, H. A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487491.
Saitou, N. 1989. A theoretical study of the underestimation of branch lengths by the maximum parsimony principle. Systematic Zoology 38:16.
Saitou, N., and Imanishi, T. 1989. Relative efficiencies of the Fitch-Margoliash, Maximum-parsimony, Maximum-likelihood, Minimum-evolution, and Neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Molecular Biology and Evolution 6:514525.
Saitou, N., and Nei, M. 1987. The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406425.
Schleifer, K. H., and Ludwig, W. 1989. Phylogenetic relationships among bacteria. Pp. 103117in Fernholm, et al. 1989.
Sheldon, F. H. 1987. Rates of single-copy DNA evolution in herons. Molecular Biology and Evolution 4:5669.
Smith, A. B. 1989. RNA sequence data in phylogenetic reconstruction: testing the limits of its resolution. Cladistics 5:321344.
Smith, A. B. 1992. Echinoderm phylogeny: morphology and molecules approach accord. Trends in Ecology and Evolution 7:224229.
Smith, A. B. 1994a. Rooting molecular trees: problems and strategies. Biological Journal of the Linnean Society 51:279292.
Smith, A. B. 1994b. Systematics and the fossil record: discovering evolutionary patterns. Blackwells, London.
Smith, A. B., and Hollingworth, N. T. J. 1990. Tooth structure and phylogeny of the Upper Permian echinoid Miocidaris keyserlingi. Proceedings of the Yorkshire Geological Society 48:4760.
Smith, A. B., and Patterson, C. 1989. The influence of taxonomic method on the perception of patterns of evolution. Evolutionary Biology 23:127216.
Smith, A. B., Lafay, B., and Christen, R. 1992. Comparison of morphological and molecular rates of evolution: 28S ribosomal RNA in echinoids. Philosophical Transactions of the Royal Society, London B 338:365382.
Soltis, P. S., and Soltis, D. E., and Smiley, C. J. 1992. An rbcL sequence from Miocene Taxodium [bald cypress]. Proceedings of the National Academy of Sciences, U.S.A. 89:449451.
Sourdis, J., and Krimbas, K. 1987. Accuracy of phylogenetic trees estimated from DNA sequence data. Molecular Biology and Evolution 4:159166.
Swofford, D. L. 1991. When are phylogeny estimates from molecular and morphological data incongruent. Pp. 295333in Miyamoto, and Cracraft, 1991.
Tamura, K. 1992. The rate and pattern of nucleotide substitution in Drosophila mitochondrial DNA. Molecular Biology and Evolution 9:814825.
Thomas, R. H., Schaffner, W., Wilson, A. C., and Pääbo, S. 1989. DNA phylogeny of the extinct marsupial wolf. Nature (London) 340:465467.
Turberville, J. M., Pfeider, D. M., Field, K. G., and Raff, R. A. 1991. The phylogenetic status of arthropods, as inferred from 18S rRNA sequences. Molecular Biology and Evolution 8:669686.
Turberville, J. M., Field, K. G., and Raff, R. A. 1992. Phylogenetic position of phylum Nemertini, inferred from 18S rRNA sequences: molecular data as a test of morphological character homology. Molecular Biology and Evolution 9:235249.
van de Peer, Y., Neefs, J-M., de Rijk, P., and de Wachter, R. 1993. Reconstructing evolution from eukaryotic small-ribosomal-subunit RNA sequences: calibration of the molecular clock. Journal of Molecular Evolution 37:221232.
Westbroek, P. 1991. Decoding ancient biomolecules. National Environmental Research Council News, July pp. 2627.
Wheeler, W. C. 1992. Extinction, sampling and molecular phylogenetics. Pp. 205215in Novacek, and Wheeler, 1992.
Wheeler, W. C., Cartwright, P., and Hayashi, C. Y. 1993. Arthropod phylogeny: a combined approach. Cladistics 9:139.
Woese, C. R. 1989. Archebacteria and the nature of their evolution. Pp. 119130in Fernholm, et al. 1989.
Wyss, A. R., Novacek, M. J., and McKenna, M. C. 1987. Amino acid sequence versus morphological data and the internodal relationships of mammals. Molecular Biology and Evolution 4:99116.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Paleobiology
  • ISSN: 0094-8373
  • EISSN: 1938-5331
  • URL: /core/journals/paleobiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed