Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T21:07:58.972Z Has data issue: false hasContentIssue false

Paleoecology of the early Eocene Willwood mammal fauna from the central Bighorn Basin, Wyoming

Published online by Cambridge University Press:  08 April 2016

Amy E. Chew*
Affiliation:
Department of Anatomy, Western University of Health Sciences, Pomona, California 91766. E-mail: achew@westernu.edu

Abstract

The mammal fauna of the Willwood Formation, central Bighorn Basin, Wyoming, is ideal for paleoecological analysis because it is extensive, well studied, and continuously distributed over sediments representing the first 3 Myr of the early Eocene. The geology of the Bighorn Basin is also well known, providing a precise temporal framework and climatic context for the Willwood mammals. Previous analysis identified three “biohorizons,” based on simple counts of the first and last appearances of species. This study uses species diversity and appearance rates calculated from more extensive collections to approximate the ecological dynamic of the ancient fauna and assess whether the biohorizons were significant turnover events related to recently described climatic variation. Diversity and appearance data collected for this project are extensively corrected for uneven sampling, which varies by two orders of magnitude. Observed, standardized appearance and diversity estimates are subsequently compared with predicted background frequencies to identify significant variation. Important coincident shifts in the biotic parameters demonstrate that ecological change was concentrated in two discrete intervals ≤300 Kyr each that correspond with two of the original biohorizons. The intervals coincide with the onset and reversal of an episode of climate cooling identified directly from Bighorn Basin floras and sediments. Ecological changes inferred from the diversity and turnover patterns at and following the two biohorizons suggest short- and long-term faunal response to shifts in mean annual temperature on the order of 5–8°C.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 127:285311.CrossRefGoogle Scholar
Alroy, J. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707733.Google Scholar
Alroy, J., Koch, P. L., and Zachos, J. C. 2000. Global climate change and North American mammalian evolution. Paleobiology 26:707733.2.0.CO;2>CrossRefGoogle Scholar
Aubry, M.-P., Lucas, S. G., and Berggren, W. A., eds. 1998. Late Paleocene-Early Eocene biotic and climatic events in the marine and terrestrial records. Columbia University Press, New York.Google Scholar
Badgley, C. 1990. A statistical assessment of last appearances in the Eocene record of mammals. Pp. 153168 in Bown, and Rose, 1990.Google Scholar
Badgley, C., and Gingerich, P. D. 1988. Sampling and faunal turnover in early Eocene mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 63:141157.Google Scholar
Bains, S., Corfield, R. M., and Norris, R. D. 1999. Mechanisms of climate warming at the end of the Paleocene. Science 285:724727.Google Scholar
Bao, H., Koch, P. L., and Rumble, D. 1999. Paleocene-Eocene climatic variation in western North America: evidence from the delta18O of pedogenic hematite. Geological Society of America Bulletin 111:14051415.Google Scholar
Barnosky, A. D., and Carrasco, M. A. 2002. Effects of Oligo-Miocene global climatic changes on mammalian species richness in the northwestern quarter of the USA. Evolutionary Ecology Research 4:811841.Google Scholar
Barnosky, A. D., Hadly, E. A., and Bell, C. J. 2003. Mammalian response to global warming on varied temporal scales. Journal of Mammalogy 84:354368.Google Scholar
Barry, J. C. 1995. Faunal turnover and diversity in the terrestrial Neogene of Pakistan. Pp. 115134 in Vrba, E. S., Denton, G. H., Partridge, T. C., and Burckle, L. H., eds. Paleoclimate and evolution with emphasis on human origins. Yale University Press, New Haven, Conn. Google Scholar
Barry, J. C., Morgan, M. E., Flynn, L. J., Pilbeam, D., Jacobs, L. L., Lindsay, E. H., Raza, S. M., and Solounias, N. 1995. Patterns of faunal turnover and diversity in the Neogene Siwaliks of northern Pakistan. In Badgley, C. and Behrensmeyer, A. K., eds. Long records of continental ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology 115:209226.CrossRefGoogle Scholar
Barry, J. C., Morgan, M. E., Flynn, L. J., Pilbeam, D., Behrensmeyer, A. K., Raza, S. M., Khan, I. A., Badgley, C., Hicks, J., and Kelley, J. 2002. Faunal and environmental change in the Late Miocene Siwaliks of northern Pakistan. Paleobiology Memoir 3. Paleobiology 28(Suppl. to No. 2).CrossRefGoogle Scholar
Beard, K. C. 1997. East of Eden: Asia as an important center of taxonomic origination in mammalian evolution. In Beard, K. C. and Dawson, M. R., eds. Dawn of the age of mammals in Asia. Bulletin of the Carnegie Museum of Natural History 34:539.Google Scholar
Bobe, R., and Eck, G. G. 2001. Responses of African bovids to Pliocene climatic change. Paleobiology Memoir 2. Paleobiology 27(Suppl. to No. 2).Google Scholar
Bowen, G. J., Koch, P. L., Gingerich, P. D., Norris, R. D., Bains, S., and Corfield, R. M. 2001. Refined isotope stratigraphy across the continental Paleocene-Eocene boundary on Polecat Bench in the northern Bighorn Basin. Pp. 7388 in Gingerich, 2001b.Google Scholar
Bowen, G. J., Beerling, D. J., Koch, P. L., Zachos, J. C., and Quattlebaum, T. 2004. A humid climate state during the Paleocene/Eocene thermal maximum. Nature 432:495499.CrossRefGoogle Scholar
Bown, T. M. 1979. Geology and mammalian paleontology of the Sand Creek Facies, Lower Willwood Formation (Lower Eocene), Washakie County, Wyoming. Geological Survey of Wyoming, Laramie.Google Scholar
Bown, T. M. 1980. Summary of latest Cretaceous and Cenozoic sedimentary, tectonic, and erosional events, Bighorn Basin, Wyoming. Pp. 2532 in Gingerich, P. D., ed. Early Cenozoic paleontology and stratigraphy of the Bighorn Basin, Wyoming. University of Michigan Papers on Paleontology 24:2532.Google Scholar
Bown, T. M., and Beard, K. C. 1990. Systematic lateral variation in the distribution of fossil mammals in alluvial paleosols, lower Eocene Willwood Formation, Wyoming. Pp. 135151 in Bown, and Rose, 1990.Google Scholar
Bown, T. M., and Kraus, M. J. 1981a. Lower Eocene alluvial paleosols (Willwood Formation, northwest Wyoming, USA), and their significance for paleoecology, paleoclimatology, and basin analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 34:130.Google Scholar
Bown, T. M., and Kraus, M. J. 1981b. Vertebrate fossil-bearing paleosol units (Willwood Formation, lower Eocene, northwest Wyoming, USA: implications for taphonomy, biostratigraphy, and assemblage analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 34:3156.Google Scholar
Bown, T. M., and Kraus, M. J. 1987. Integration of channel and flood-plain suites. I. Developmental sequence and lateral relations of alluvial paleosols. Journal of Sedimentary Petrology 57:587601.Google Scholar
Bown, T. M., and Kraus, M. J. 1993. Time-stratigraphic reconstruction and integration of paleopedologic, sedimentologic, and biotic events (Willwood Formation, Lower Eocene, northwest Wyoming, USA). Palaios 8:6880.CrossRefGoogle Scholar
Bown, T. M., and Rose, K. D. 1987. Patterns of dental evolution in early Eocene anaptomorphine primates (Omomyidae) from the Bighorn Basin, Wyoming. Journal of Paleontology, Paleontological Society Memoir 23 Journal of Paleontology 61(Suppl. to No. 5):1162.Google Scholar
Bown, T. M., and Rose, K. D. 1990. Dawn of the Age of Mammals in the northern part of the Rocky Mountain Interior, North America. Geological Society of America Special Paper 243.Google Scholar
Bown, T. M., and Schankler, D. 1982. A review of the Proteutheria and Insectivora of the Willwood Formation (Lower Eocene), Bighorn Basin, Wyoming. U.S. Geological Survey Bulletin 1523:179.Google Scholar
Bown, T. M., Rose, K. D., Simons, E. L., and Wing, S. L. 1994. Distribution and stratigraphic correlation of upper Paleocene and lower Eocene fossil mammal and plant localities of the Fort Union, Willwood, and Tatman Formations, southern Bighorn Basin, Wyoming. U.S. Geological Survey Professional Paper 1540.Google Scholar
Clyde, W. C. 2001. Mammalian biostratigraphy of the McCullough Peaks area in the northern Bighorn Basin. Pp. 109126 in Gingerich, 2001b.Google Scholar
Clyde, W. C., and Gingerich, P. D. 1998. Mammalian community response to the latest Paleocene thermal maximum: an isotaphonomic study in the northern Bighorn Basin, Wyoming. Geology 26:10111014.2.3.CO;2>CrossRefGoogle Scholar
Clyde, W. C., Stamatakos, J., and Gingerich, P. D. 1994. Chronology of the Wasatchian Land-Mammal Age (early Eocene): magnetostratigraphic results from the McCullough Peaks section, northern Bighorn Basin, Wyoming. Journal of Geology 102:367377.CrossRefGoogle Scholar
Clyde, W. C., Zonneveld, J.-P., Stamatakos, J., Gunnell, G. F., and Bartels, W. S. 1997. Magnetostratigraphy across the Wasatchian-Bridgerian boundary (early to middle Eocene) in the western Green River Basin, Wyoming. Journal of Geology 105:657669.CrossRefGoogle Scholar
Clyde, W. C., Finarelli, J. A., and Christensen, K. E. 2005. Evaluating the relationship between pedofacies and faunal composition: implications for faunal turnover at the Paleocene-Eocene boundary. Palaios 20:390399.Google Scholar
Clyde, W. C., Hamzi, W., Finarelli, J. A., Wing, S. L., Schankler, D., and Chew, A. E. 2007. A basin-wide magnetostratigraphic framework for the Bighorn Basin, WY. Geological Society of America Bulletin 119(7–8):848859.Google Scholar
Davies-Vollum, K. S., and Wing, S. L. 1998. Sedimentological, taphonomic, and climatic aspects of Eocene swamp deposits (Willwood Formation, Bighorn Basin, Wyoming). Palaios 13:2840.CrossRefGoogle Scholar
Foote, M. 1992. Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18:116.Google Scholar
Foote, M. 2000a. Origination and extinction components of taxonomic diversity: general problems. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective Paleobiology 26(Suppl. to No. 4):74102.Google Scholar
Foote, M. 2000b. Origination and extinction components of taxonomic diversity: Paleozoic and post-Paleozoic dynamics. Paleobiology 26:578605.2.0.CO;2>CrossRefGoogle Scholar
Fricke, H. C., and Wing, S. L. 2004. Oxygen isotope and paleobotanical estimates of temperature and delta(18) O-latitude gradients over North America during the Early Eocene. American Journal of Science 304:612635.Google Scholar
Fricke, H. C., Clyde, W. C., O'Neil, J. R., and Gingerich, P. D. 1998. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming). Earth and Planetary Science Letters 160:193208.Google Scholar
Froehlich, D. J. 2002. Quo vadis Eohippus? The systematics and taxonomy of the early Eocene equids (Perissodactyla). Zoological Journal of the Linnean Society 134:141256.Google Scholar
Gingerich, P. D. 1974. Stratigraphic record of Early Eocene Hyopsodus and the geometry of mammalian phylogeny. Nature 248:107109.CrossRefGoogle Scholar
Gingerich, P. D. 1980. Evolutionary patterns in early Cenozoic mammals. Annual Review of Earth and Planetary Sciences 8:407424.Google Scholar
Gingerich, P. D. 1983. Systematics of early Eocene Miacidae (Mammalia, Carnivora) in the Clark's Fork Basin, Wyoming. Contributions from the Museum of Paleontology, University of Michigan 26:197225.Google Scholar
Gingerich, P. D. 1985. Species in the fossil record: concepts, trends, and transitions. Paleobiology 11:2741.Google Scholar
Gingerich, P. D. 1989. New earliest Wasatchian mammalian fauna from the Eocene of Northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage. University of Michigan Papers on Paleontology No. 28.Google Scholar
Gingerich, P. D. 1991. Systematics and evolution of early Eocene Perissodactyla (Mammalia) in the Clarks Fork Basin, Wyoming. Contributions from the Museum of Paleontology, University of Michigan 28:181213.Google Scholar
Gingerich, P. D. 2001a. Biostratigraphy of the continental Paleocene-Eocene boundary interval on Polecat bench in the northern Bighorn Basin. Pp. 3771 in Gingerich, 2001b.Google Scholar
Gingerich, P. D. 2001b. Paleocene-Eocene stratigraphy and biotic change in the Bighorn and Clark's Fork Basins, Wyoming. University of Michigan Papers on Paleontology No. 33.Google Scholar
Gingerich, P. D. 2003. Mammalian responses to climate change at the Paleocene-Eocene boundary: Polecat Bench record in the northern Bighorn Basin, Wyoming. In Wing, S. L., Gingerich, P. D., Schmidtz, B., and Thomas, E., eds. Causes and consequences of globally warm climates in the early Paleogene. Geological Society of America Special Paper 369:463478.Google Scholar
Gingerich, P. D., and Clyde, W. C. 2001. Overview of mammalian biostratigraphy in the Paleocene-Eocene Fort Union and Willwood Formations of the Bighorn and Clarks Fork Basins. Pp. 114 in Gingerich, 2001b.Google Scholar
Gingerich, P. D., and Deutsch, H. A. 1989. Systematics and evolution of early Eocene Hyaenodontidae (Mammalia, Creodonta) in the Clarks Fork Basin, Wyoming. Contributions from the Museum of Paleontology, University of Michigan 27:327391.Google Scholar
Gingerich, P. D., and Rose, K. D. 1982. Studies on Paleocene and early Eocene Apatemyidae (Mammalia, Insectivora). I. Dentition of Clarkforkian Labidolemur kayi . Contributions from the Museum of Paleontology, University of Michigan 26:4969.Google Scholar
Gingerich, P. D., and Simons, E. L. 1977. Systematics, phylogeny and evolution of Early Eocene Adapidae (Mammalia, Primates) in North America. Contributions from the Museum of Paleontology, University of Michigan 24:245279.Google Scholar
Gradstein, F. M., Ogg, J. G., and Smith, A. G., eds. 2004. A geologic time scale 2004. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Gunnell, G. F. 1998. Mammalian faunal composition and the Paleocene/Eocene Epoch/Series boundary: evidence from the northern Bighorn Basin, Wyoming. Pp. 409427 in Aubry, et al. 1998.Google Scholar
Holland, S. 2003. Analytic rarefaction 1. 3. University of Georgia, Athens.Google Scholar
Hooker, J. J. 1998. Mammalian faunal change across the Paleocene-Eocene transition in Europe. Pp. 428450 in Aubry, et al. 1998.Google Scholar
Hooker, J. J. 2000. Ecological response of mammals to global warming in the late Paleocene and early Eocene. Geologiska Föreningens Förhandlingen, Geological Society of Sweden Thematic Issue 122(Part 1):7779.Google Scholar
Hooker, J. J., Collinson, M. E., and Sille, N. P. 2004. Eocene-Oligocene mammalian faunal turnover in the Hampshire Basin, UK: calibration to the global time scale and the major cooling event. Journal of the Geological Society, London 161:161172.Google Scholar
Janis, C. M. 1993. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology and Systematics 24:467500.Google Scholar
Kennett, J. P., and Stott, L. D. 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353:225229.CrossRefGoogle Scholar
Koch, P. L., and Morril, C. 2000. Paleocene-Eocene climate change in southwestern Wyoming: isotopic records from paleosol carbonates and freshwater bivalves. Geologiska Föreningens Förhandlingen, Geological Society of Sweden Thematic Issue 122(Part 1):8991.Google Scholar
Koch, P. L., Zachos, J. C., and Gingerich, P. D. 1992. Correlation between isotope records in marine and continental carbon reservoirs near the Paleocene/Eocene boundary. Nature 358:319322.Google Scholar
Koch, P. L., Zachos, J. C., and Dettman, D. L. 1995. Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA). Palaeogeography, Palaeoclimatology, Palaeoecology 115:6189.Google Scholar
Koch, P. L., Clyde, W. C., Hepple, R. P., Fogel, M. L., Wing, S. L., and Zachos, J. C. 2003. Carbon and oxygen isotope records from paleosols spanning the Paleocene-Eocene boundary, Bighorn Basin, Wyoming. In Wing, S. L., Gingerich, P. D., Schmidtz, B., and Thomas, E., eds. Causes and consequences of globally warm climates in the Early Paleogene. Geological Society of America Special Paper 369:4964.Google Scholar
Kraus, M. J. 1987. Integration of channel and floodplain suites. II. Lateral relations of alluvial paleosols. Journal of Sedimentary Petrology 57:602612.Google Scholar
Kraus, M. J. 1996. Avulsion deposits in Lower Eocene alluvial rocks, Bighorn Basin, Wyoming. Journal of Sedimentary Research 66:354363.Google Scholar
Kraus, M. J. 1997. Lower Eocene alluvial paleosols: pedogenic development, stratigraphic relationships, and paleosol/landscape associations. Palaeogeography, Palaeoclimatology, Palaeoecology 129:387406.Google Scholar
Kraus, M. J., and Gwinn, B. 1997. Facies and facies architecture of Paleogene floodplain deposits, Willwood Formation, Bighorn Basin, Wyoming, USA. Sedimentary Geology 114(1–4):3354.Google Scholar
Krishtalka, L. 1993. Anagenetic angst: species boundaries in Eocene primates. Pp. 331344 in Kimbel, W. H. and Martin, L. B., eds. Species, species concepts, and primate evolution. Plenum, New York.CrossRefGoogle Scholar
Krishtalka, L., and Stucky, R. K. 1985. Revision of the Wind River faunas, Early Eocene of central Wyoming, Part 7. Revision of Diacodexis (Mammalia, Artiodactyla). Annals of the Carnegie Museum 54:413486.CrossRefGoogle Scholar
Krishtalka, L., West, R. M., Black, C. C., Dawson, M. R., Flynn, J. J., Turnbull, W. D., Stucky, R. K., McKenna, M. C., Bown, T. M., Golz, D. J., and Lillegraven, J. A. 1987. Eocene (Wasatchian through Duchesnean) biochronology of North America. Pp. 77117 in Woodburne, M. O., ed. Cenozoic mammals of North America: geochronology and biostratigraphy. University of California Press, Berkeley.Google Scholar
Lourens, L. J., Sluijs, A., Kroon, D., Zachos, J. C., Thomas, E., Rohl, U., Bowles, J., and Raffi, I. 2005. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435:10831087.CrossRefGoogle ScholarPubMed
Maas, M. C., Anthony, M. R. L., Gingerich, P. D., Gunnell, G. F., and Krause, D. W. 1995. Mammalian generic diversity and turnover in the late Paleocene and early Eocene of the Bighorn and Crazy Mountains Basins, Wyoming and Montana (USA). Palaeogeography, Palaeoclimatology, Palaeoecology 115:181207.Google Scholar
McKinney, M. L. 1990. Classifying and analyzing evolutionary trends. Pp. 2858 in McNamara, K. J., ed. Evolutionary trends. University of Arizona Press, Tucson.Google Scholar
Meng, J., and McKenna, M. C. 1998. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature 394:364367.CrossRefGoogle Scholar
O'Leary, M. A. 1996. Dental evolution in the early Eocene Notharctinae (Primates, Adapiformes) from the Bighorn Basin, Wyoming: documentation of gradual evolution in the oldest true primates. Ph.D. dissertation. Johns Hopkins University, Baltimore.Google Scholar
Prothero, D. R. 1999. Does climatic change drive mammalian evolution? GSA Today 9(9):18.Google Scholar
Prothero, D. R. 2004. Did impacts, volcanic eruptions, or climate change affect mammalian evolution? Palaeogeography, Palaeoclimatology, Palaeoecology 214:283294.Google Scholar
Raup, D. M. 1975. Taxonomic diversity estimation using rarefaction. Paleobiology 1:333342.CrossRefGoogle Scholar
Rose, K. D. 1981a. The Clarkforkian Land-Mammal Age and mammalian faunal composition across the Paleocene-Eocene boundary. University of Michigan Papers on Paleontology No. 26.Google Scholar
Rose, K. D. 1981b. Composition and species diversity in Paleocene and Eocene mammal assemblages: an empirical study. Journal of Vertebrate Paleontology 1:367388.Google Scholar
Rose, K. D. 1982. Skeleton of Diacodexis, oldest known artiodactyl. Science 216:621623.Google Scholar
Rose, K. D. 1990. Postcranial skeletal remains and adaptations in early Eocene mammals from the Willwood Formation, Bighorn Basin, Wyoming. Pp. 107133 in Bown, and Rose, 1990.Google Scholar
Rose, K. D. 1996. On the origin of the order Artiodactyla. Proceedings of the National Academy of Sciences USA 93:17051709.Google Scholar
Rose, K. D. 2001a. Compendium of Wasatchian mammal postcrania from the Willwood Formation. Pp. 157183 in Gingerich, 2001b.Google Scholar
Rose, K. D. 2001b. Wyoming's garden of Eden. Natural History Magazine, April 2001:5559.Google Scholar
Rose, K. D., and Bown, T. M. 1982. New plesiadapiform primates from the Eocene of Wyoming and Montana. Journal of Vertebrate Paleontology 2:6369.Google Scholar
Rose, K. D., and Bown, T. M. 1986. Gradual evolution and species discrimination in the fossil record. Contributions to Paleontology, University of Wyoming Special Paper 3:119130.Google Scholar
Rose, K. D., and Bown, T. M. 1993. Species concepts and species recognition in Eocene primates. Pp. 299330 in Kimbel, W. H. and Martin, L. B., eds. Species, species concepts, and primate evolution. Plenum, New York.CrossRefGoogle Scholar
Rose, K. D., and Von Koenigswald, W. 2007. The marmot-sized paramyid rodent Notoparamys costilloi from the Early Eocene of Wyoming, with comments on dental variation and occlusion in paramyids. Bulletin of the Carnegie Museum of Natural History 39:111125.Google Scholar
Sanders, H. L. 1968. Marine benthic diversity: a comparative study. American Naturalist 102:243282.Google Scholar
Schankler, D. 1980. Faunal zonation of the Willwood Formation in the central Bighorn Basin, Wyoming. In Gingerich, P. D., ed. Early Cenozoic paleontology and stratigraphy of the Bighorn Basin, Wyoming. University of Michigan Papers on Paleontology 24:99114.Google Scholar
Silcox, M. T., and Rose, K. D. 2001. Unusual vertebrate microfaunas from the Willwood Formation, Early Eocene of the Bighorn Basin, Wyoming. Pp. 131164 in Gunnell, G. F., ed. Eocene biodiversity: unusual occurrences and rarely sampled habitats. Plenum, New York.Google Scholar
Smith, A. G., Singer, B. S., and Carroll, A. R. 2003. 40Ar/39Ar geochronology of the Eocene Green River Formation, Wyoming. Geological Society of America Bulletin 115:549565.Google Scholar
Smith, A. G., Singer, B. S., and Carroll, A. R. 2004. 40Ar/39Ar geochronology of the Eocene Green River Formation, Wyoming: Reply. Geological Society of America Bulletin 116:253256.Google Scholar
Strait, S. G. 2001. New Wa-0 mammalian fauna from Castle Gardens in the southeastern Bighorn Basin. Pp. 127143 in Gingerich, 2001b.Google Scholar
Stucky, R. K. 1990. Evolution of land mammal diversity in North America during the Cenozoic. Pp. 375432 in Genoways, H. H., ed. Current mammalogy. Plenum, New York.Google Scholar
Tauxe, L., Gee, J., Gallet, Y., Pick, T., and Bown, T. M. 1994. Magnetostratigraphy of the Willwood Formation, Bighorn Basin, Wyoming: new constraints on the location of Paleocene/Eocene boundary. Earth and Planetary Science Letters 125:159172.Google Scholar
Vrba, E. S. 1995. The fossil record of African antelopes (Mammalia, Bovidae) in relation to human evolution and paleoclimate. Pp. 385424 in Vrba, E. S., Denton, G. H., Partridge, T. C., and Burckle, L. H., eds. Paleoclimate and evolution with emphasis on human origins. Yale University Press, New Haven, Conn. Google Scholar
Walsh, S. L. 1998. Fossil datum and paleobiological event terms, paleontostratigraphy, chronostratigraphy, and the definition of land mammal “age” boundaries. Journal of Vertebrate Paleontology 18:150179.CrossRefGoogle Scholar
Wing, S. L. 1998. Late Paleocene-early Eocene floral and climatic change in the Bighorn Basin, Wyoming. Pp. 380400 in Aubry, et al. 1998.Google Scholar
Wing, S. L. 2004. Implications of Paleocene-Eocene floral change for mammals. Journal of Vertebrate Paleontology 24(Suppl. to No. 3):131A.Google Scholar
Wing, S. L., and Bown, T. M. 1985. Fine scale reconstruction of late Paleocene-early Eocene paleogeography in the Bighorn Basin of northern Wyoming. Pp. 93105 in Flores, R. M. and Kaplan, S. S., eds. Cenozoic paleogeography of west-central United States. SEPM, Rocky Mountain Section, Denver.Google Scholar
Wing, S. L., and Greenwood, D. R. 1993. Fossils and fossil climates: the case for equable continental interiors in the Eocene. Philosophical Transactions of the Royal Society of London B 341:243252.Google Scholar
Wing, S. L., and Harrington, G. J. 2001. Floral response to rapid warming in the earliest Eocene and implications for concurrent faunal change. Paleobiology 27:539562.2.0.CO;2>CrossRefGoogle Scholar
Wing, S. L., Bown, T. M., and Obradovich, J. D. 1991. Early Eocene biotic and climatic change in interior western North America. Geology 19:11891192.Google Scholar
Wing, S. L., Alroy, J., and Hickey, L. J. 1995. Plant and mammal diversity in the Paleocene to Early Eocene of the Bighorn Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 115:117155.Google Scholar
Wing, S. L., Bao, H., and Koch, P. L. 2000. An early Eocene cool period? Evidence for continental cooling during the warmest part of the Cenozoic. Pp. 197237 in Huber, B. T., MacLeod, K. G., and Wing, S. L., eds. Warm climates in earth history. Cambridge University Press, Cambridge.Google Scholar
Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M., and Freeman, K. H. 2005. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science 310:993996.Google Scholar
Woodburne, M. O. 1996. Precision and resolution in mammalian chronostratigraphy: principles, practices, examples. Journal of Vertebrate Paleontology 16:531555.Google Scholar
Woodburne, M. O. 2004. Definitions. Pp. xixv in Woodburne, M. O., ed. Late Cretaceous and Cenozoic mammals of North America: biostratigraphy and geochronology. Columbia University Press, New York.Google Scholar
Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.Google Scholar
Zachos, J. C., Wara, M. W., Bohaty, S., Delaney, M. L., Petrizzo, M. R., Brill, A., Bralower, T. J., and Premoli-Silva, I. 2003. A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum. Science 302:15511554.Google Scholar
Zachos, J. C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S. J., and Bralower, T. J. 2006. Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene thermal maximum: inferences from TEX86 and isotope data. Geology 34:737740.Google Scholar
Supplementary material: File

Chew supplementary material

Supplementary Material

Download Chew supplementary material(File)
File 272.9 KB