Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T12:49:27.492Z Has data issue: false hasContentIssue false

Optimized skeletal morphologies of silicoflagellate genera Dictyocha and Distephanus

Published online by Cambridge University Press:  08 April 2016

Kevin McCartney
Affiliation:
University of Maine at Presque Isle, Presque Isle, Maine 04769
David E. Loper
Affiliation:
Geophysical Fluid Dynamics Institute, Florida State University, Tallahassee, Florida 32306

Abstract

Several groups of siliceous microorganisms possess a skeletal latticework of interconnected rods. Skeletal configurations of one of these groups, the silicoflagellates, can be produced by a simple mathematical model that minimizes the apical surface area for a given basal area and internal volume. A similar model that minimizes the total length of the skeletal elements, and thus the silica utilization and skeletal weight, produces configurations that are generally less common in silicoflagellates. The diversity of silicoflagellate skeletal morphologies suggests that both the minimization of apical surface area and the conservation of skeletal material may be important factors in skeletal design. The two most important morphologies found in modern oceans, the four-sided Dictyocha and the six-sided Distephanus, can co-occur in an environment where both factors have some relative importance. However, these models do not explain the range of silicoflagellate skeletal morphology found in nature.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Almgren, F. J. Jr. 1982. Minimal surface forms. The Mathematical Intelligencer 4:164172.Google Scholar
Almgren, F. J. Jr., and Taylor, J. E. 1976. The geometry of soap films and soap bubbles. Scientific American 235:8293.Google Scholar
Barron, J. A., Bukry, D., and Poore, R. Z. 1984. Correlation of the Middle Eocene Kellogg Shale of northern California. Micropaleontology 30:138170.Google Scholar
Berger, W. H. 1969. Planktonic foraminifera: basic morphology and ecologic implications. Journal of Paleontology 43:13691383.Google Scholar
Boney, A. D. 1973. Observations on the silicoflagellate Dictyocha speculum Ehrenb. from the Firth of Clyde. Journal of the Marine Biological Association of the United Kingdom 53:263268.Google Scholar
Brasier, M. D. 1982. Architecture and evolution of the foraminiferal test—a theoretical approach. Pp. 141. In Banner, F. T., and Lord, A. R. (eds.), Aspects of Micropaleontology. George, Allen and Unwin; London.Google Scholar
Bukry, D. 1975a. Coccolith and silicoflagellate stratigraphy near Antartica, Deep Sea Drilling Project Leg 28. Initial Reports of the Deep Sea Drilling Project 28:709723.Google Scholar
Bukry, D. 1975b. Coccolith and silicoflagellate stratigraphy, Northwestern Pacific Ocean, Deep Sea Drilling Project Leg 32. Initial Reports of the Deep Sea Drilling Project 32:677701.Google Scholar
Bukry, D. 1978. Cenozoic coccolith, silicoflagellate, and diatom stratigraphy, Deep Sea Drilling Project Leg 44. Initial Reports of the Deep Sea Drilling Project 44:807863.Google Scholar
Bukry, D. 1982. Neogene silicoflagellates of the eastern equatorial Pacific, Deep Sea Drilling Project Hole 503A. Initial Reports of the Deep Sea Drilling Project 68:311323.Google Scholar
Bukry, D. 1985. Tropical Pacific silicoflagellate zonation and paleotemperature trends of the Late Cenozoic. Initial Reports of the Deep Sea Drilling Project 85:477497.Google Scholar
Bukry, D., and Foster, J. H. 1973. Silicoflagellate and diatom stratigraphy, Leg 16, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project 16:815871.Google Scholar
Dumitrica, P. 1967. Dictyocha bachmanni n. sp. et considerations sur la lignee phylogenetique Dictyocha crux-D. stauracantha-D. bachmanni. Cahiers de Micropaléontologie Série 1:16.Google Scholar
Dumitrica, P. 1978. Badenian silicoflagellates from Central Paratethys. Pp. 207230. In Brestenska, E. (ed.), Chronostratigraphie und Neostratotypen, Miozan der Zentralen Paratethys 6.Google Scholar
Gemeindhardt, K. 1934. Die Silicoflagellaten des sudatlantischen Ozeans, Wissench. Ergebrisse der Deutschen Antlantischen Expedition auf den Forschungs-und Vermessungsschiff “Meteor” 12:274312.Google Scholar
Gould, S. J., and Lewontin, R. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptionist program. Proceedings of the Royal Society of London B 205:581598.Google Scholar
Harper, H. E., and Knoll, A. H. 1975. Silica, diatoms, and Cenozoic radiolarian evolution. Geology 3:175177.Google Scholar
Kitchell, J. 1983. Biotic interactions and siliceous marine phytoplankton: an ecological and evolutionary perspective. Pp. 285329. In Tevesz, M. S. J., and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press; New York.Google Scholar
Leinen, M. 1979. Biogenic silica accumulation in the central equatorial Pacific and its implications for Cenozoic paleoceanography. Geological Society of America Bulletin, Part II 90:13101376; Summary, Part I 90:801–803.Google Scholar
Ling, H. Y., and Takahashi, K. 1985. The silicoflagellate genus Octactis Schiller 1925: a synonym of the genus Distephanus. Micropaleontology 31:7681.Google Scholar
Lipps, J. H. 1970. Ecology and evolution of silicoflagellates. Proceedings of the North American Paleontological Convention, Chicago 2:965993.Google Scholar
McCartney, K. 1987 Silicoflagellate, ebridians, and archaeomonads. Pp. 146168. In Broadhead, T. W. (ed.), Fossil Procar-yotes and Protists: Notes for a Short Course. Department of Geology, University of Tennessee Studies in Geology 18.Google Scholar
McCartney, K. 1988a. Modeling Silicoflagellate Skeletal Morphology. Unpublished Ph.D. thesis, Florida State University. Tallahassee, Florida.Google Scholar
McCartney, K. 1988b. SILICO: a computer program for the three-dimensional measurement of silicoflagellate skeletons. Computers & Geosciences 14:99111.Google Scholar
McCartney, K., and Wise, S. W. Jr. 1987. Silicoflagellates and ebridians from Deep Sea Drilling Project Leg 93, Site 604 and 605 (New Jersey Transect). Initial Reports of the Deep Sea Drilling Project 87:801814.Google Scholar
McCartney, K., Wise, S. W. Jr., Harwood, D. M., and Gersonde, R.In press. Enigmatic lower Albian silicoflagellates from ODP Site 693: progenitors of the Order Silicoflagellata? Proceedings of the Ocean Drilling Project, Scientific Results 113.Google Scholar
McGhee, G. R. Jr. 1980. Shell form in the convex articulate Brachiopoda: a geometrical analysis. Paleobiology 6:5776.Google Scholar
Moore, T. C. 1969. Radiolaria: change in skeletal weight and resistance to solution. Geological Society of America Bulletin 80:21032108.Google Scholar
Perch-Nielsen, K. 1985. Silicoflagellates. Pp. 811846. In Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K. (eds.), Plankton Stratigraphy. Cambridge University Press; Cambridge, England.Google Scholar
Poelchau, H. S. 1974. Holocene Silicoflagellates of the North Pacific: Their Distribution and Use for Paleotemperature Determination. Unpublished Ph.D. dissertation, University of California. San Diego, California.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology 41:4365.Google Scholar
Raup, D. M. 1968. Theoretical morphology of echinoid growth. Journal of Paleontology, Supplement 42:5063.Google Scholar
Reif, W.-E., and Robinson, J. A. 1975. Geometrical relationships and the form-function complex: animal skeletons. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte H3:184191.Google Scholar
Sargeant, W. A. S., Lacalli, T., and Gaines, G. 1987. The cysts and skeletal remains of dinoflagellates: speculations on the ecological causes for their morphology and development. Micropaleontology 33:136.Google Scholar
Schrader, H., Pisias, N., and Cheng, G. 1986. Seasonal variation of silicoflagellates in phytoplankton and varved sediments in the Gulf of California. Marine Micropaleontology 10:207233.Google Scholar
Seilacher, A. 1970. Arbeitskonzept zur Konstruktions-Morphologie. Lethaia 3:393396.Google Scholar
Tappan, H. 1980. The Paleobiology of Plant Protists. W. H. Freeman and Company; San Francisco.Google Scholar
Thompson, D. W. 1942. On Growth and Form. Second Edition. Cambridge University Press; Cambridge, England.Google Scholar
Yanagisawa, T. 1943. Klishitsu-benmochu nitsuite (Silicofla-gellatae). Umi to Sora 23:1129(in Japanese).Google Scholar