Skip to main content Accessibility help
×
Home

Multiple regression modeling for estimating endocranial volume in extinct Mammalia

  • Laura C. Soul (a1), Roger B. J. Benson (a1) and Vera Weisbecker (a1)

Abstract

The profound evolutionary success of mammals has been linked to behavioral and life-history traits, many of which have been tied to brain size. However, studies of the evolution of this key trait have yet to explore the full potential of the fossil record, being limited by the difficulty of obtaining endocranial data from fossils. Using measurements of endocranial volume, length, height, and width of the braincase in 503 adult specimens from 199 extant species, representing 99 of 133 extant mammalian families, we expand upon a simple method of using multiple regression to develop a formula for estimating brain size from external skull measurements. We also examined non-mammalian synapsids to assess the phylogenetic limits of our model's application. Model-predicted volume correlates strongly with measured volume (R2 = 0.993) and prediction error is between 16% and 19%. Error decreases if models developed for well-sampled subclades such as primates or rodents are used, demonstrating that some differential evolution of the relationship between brain size and skull size has occurred. However, reanalysis using phylogenetically independent contrasts demonstrates weak phylogenetic dependency, indicating that our model is appropriate for estimating the endocranial volume of species of unknown phylogenetic affinity. Thus, the model represents a generally applicable, fast and cost-efficient way to dramatically expand the taxonomic and temporal scope of mammalian brain size data sets. Even endocranial volumes of taxa with highly derived crania, such as cetaceans and monotremes, can be estimated confidently. However, the model works best for generalized placental crania. Fundamental differences in cranial architecture suggest that the model cannot provide accurate estimates of endocranial volume in non-mammalian synapsids more basal than Morganucodon (ca. 200 Ma). Therefore, use of the model for taxa phylogenetically distant from the mammalian crown group is not warranted, but it might be used to establish relative brain sizes between closely related subgroups.

Copyright

References

Hide All
Aplin, K. P. 1990. Basicranial regions of diprotodontean marsupials: anatomy, ontogeny and phylogeny. Ph.D. thesis. University of New South Wales, Sydney.
Ashwell, K. 2008. Encephalisation of Australian and New Guinean marsupials. Brain, Behaviour and Evolution 71:181199.
Barton, R., and Capellini, I. 2011. Maternal investment, life histories, and the costs of brain growth in mammals. Proceedings of the National Academy of Sciences USA 108:61696174.
Barton, R. A., and Harvey, P. H. 2000. Mosaic evolution of brain structure in mammals. Nature 405:10551056.
Beck, R. M. D., Bininda-Emonds, O. R. P., Cardillo, M., Liu, F. R., and Purvis, A. 2006. A higher-level MRP supertree of placental mammals. BMC Evolutionary Biology 6:93.
Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L., and Purvis, A. 2007. The delayed rise of present-day mammals. Nature 446:507512.
Burnham, K. P., and Anderson, D. R. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York.
Deaner, R. O., Isler, K., Burkart, J., and van Schaik, C. 2007. Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain, Behavior and Evolution 70:115124.
Delsuc, F., Scally, M., Stanhope, M. J., de Jong, W. W., Catzeflis, F. M., Springer, M. S., and Douzery, E. J. P. 2002. Molecular phylogeny of living xenarthrans and the impact of character and taxon sampling on the placental tree rooting. Molecular Biology and Evolution 10:16561671.
de Magalhães, J. P., Costa, J., and Church, G. M. 2007. An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. Journals of Gerontology Series A 62:149160.
Dolan, K. J. 2005. Cranial suture closure in two species of South American monkeys. American Journal of Physical Anthropology 35:109117.
Dunbar, R. I. M., and Shultz, S. 2007. Evolution in the Social Brain. Science 317:13441347.
Edwards, A. W. F. 1992. Likelihood: expanded edition. Johns Hopkins University Press, Baltimore, Maryland.
Farris, S. M., and Schulmeister, S. 2011. Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects. Proceedings of the Royal Society of London B 278:940951.
Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:115.
Fenart, R., and Deblock, R. 1974. Sexual differences in adult skulls of Pan troglodytes. Journal of Human Evolution 3:123133.
Finarelli, J. A. 2006. Estimation of cranial volume through the use of external skull measures in the Carnivora (Mammalia). Journal of Mammalogy 87:10271036.
Finarelli, J. A. 2008. Testing hypotheses of the evolution of brain-body size scaling in the Canidae (Carnivora, Mammalia). Paleobiology 34:3545.
Finarelli, J. A. 2010. Does encephalization correlate with life history or metabolic rate in Carnivora? Biology Letters 6 (3):350353.
Finarelli, J. A. 2011. Estimating endocranial volume from the outside of the skull in Artiodactyla. Biology Letters 5:200212.
Finarelli, J. A., and Flynn, J. J. 2007. The evolution of encephalisation in caniform carnivorans. Evolution 61:17581772.
Finarelli, J. A., 2009. Brain-size evolution and sociality in Carnivora. Proceedings of the National Academy of Sciences USA 106:93459349.
Garcia, N. E., Santos, J. L., Arsuaga, J. L., and Carretero, J. M. 2007. Endocranial morphology of Ursus deningeri Von Reichenau, 1904; from the Sima de Los Huesos (Sierra de Atapuerca) middle Pleistocene site. Journal of Vertebrate Paleontology 27 (4):10071017.
Garland, T. Jr., and Ives, A. R. 2000. Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. American Naturalist 155:346364.
Garland, T. Jr., HarveyT., P. H. T., P. H., and Ives, A. R. 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology 41:1832.
Garland, T. Jr., Bennett, A. F., and Rezende, E. L. 2005. Phylogenetic approaches in comparative physiology. Journal of Experimental Biology 208:30153035.
Goswami, A., Weisbecker, V., and Sánchez-Villagra, M. R. 2009. Developmental modularity and the marsupial-placental dichotomy. Journal of Experimental Biology Molecular and Developmental Evolution 312B:186196.
Grafen, A. 1989. The phylogenetic regression. Philosophical Transactions of the Royal Society of London B 326:119157.
Haight, J. R., and Murray, P. F. 1981. The cranial endocast of the early Miocene marsupial, Wynyardia bassiana: an assessment of taxonomic relationships based upon comparisons with recent forms. Brain, Behavior and Evolution 19:1736.
Harvey, P. H., and Pagel, M. D. 1991. The comparative method in evolutionary biology. Oxford University Press, New York.
Healy, S. D., and Rowe, C. 2007. A critique of comparative studies of brain size. Proceedings of the Royal Society of London B 274:453464.
Helms, J. A., and Schneider, R. A. 2003. Cranial skeletal biology. Nature 423:326331.
Huchon, D., and Douzery, E. J. P. 2001. From the old world to the new world: A molecular chronicle of the phylogeny and biogeography of hystricognath rodents. Molecular Phylogenetics and Evolution 20:238251.
Huchon, D., Catzeflis, F. M., and Douzery, E. J. P. 2000. Variance of molecular datings, evolution of rodents and the phylogenetic affinities between Ctenodactylidae and Hystricognathi. Proceedings of the Royal Society of London B 267:393402.
Huchon, D., Madsen, O., Sibbald, M. J. J. B., Ament, K., Stanhope, M. J., Catzeflis, F. M., de Jong, W. W., and Douzery, E. J. P. 2002. Rodent phylogeny and a timescale for the evolution of glires: evidence from an extensive taxon sampling using three nuclear genes. Molecular Biology and Evolution 19:10531065.
Isler, K., and van Schaik, C. P. 2006. Metabolic costs of brain size evolution. Biology Letters 2:557560.
Iwaniuk, A. N., and Nelson, J. 2002. Can endocranial volume be used as an estimate of brain size in birds? Canadian Journal of Zoology 80:1623.
Jerison, H. J. 1973. Evolution of brain and intelligence. Academic Press, London.
Jerison, H. J., and Barlow, H. B. 1985. Animal intelligence as encephalization. Philosophical Transactions of the Royal Society of London B 308:2135.
Kemp, T. 2006. The origin and early radiation of the therapsid mammal-like reptiles: a palaeobiological hypothesis. Journal of Evolutionary Biology 19:12311247.
Koepfli, K. P., Deere, K. A., Slater, G. J., Begg, C., Begg, K., Grassman, L., Lucherini, A., Veron, G., and Wayne, R. K. 2008. Multigene phylogeny of the Mustelidae: resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biology 6:1186.
Krajewski, C., Wroe, S., and Westerman, M. 2000. Molecular evidence for the pattern and timing of cladogenesis in dasyurid marsupials. Zoological Journal of the Linnean Society 130:375404.
Laurin, M. 2004. The evolution of body size, Cope's rule and the origin of amniotes. Systematic Biology 53:594622.
Lefebvre, L., and Sol, D. 2008. Brains, lifestyles and cognition: are there general trends. Brain, Behavior and Evolution 72:135144.
Lefebvre, L., Reader, S. M., and Sol, D. 2004. Brains, innovations and evolution in birds and primates. Brain, Behavior and Evolution 63:233246.
MacLean, E. L., Barrickman, N. L., Johnson, E. M., and Wall, C. E. 2009. Sociality, ecology, and relative brain size in lemurs. Journal of Human Evolution 56:471478.
Macrini, T. E., Rougier, G. W., and Rowe, T. 2007. Description of a cranial endocast from the fossil mammal Vincelestes (Theriiformes) and its relevance to the evolution of endocranial characters in Therians. Anatomical Record 290:875892.
Maddison, W. P., and Maddison, D. R. 2009. Mesquite: a modular system for evolutionary analysis, Version 2.71. http://mesquiteproject.org.
Marino, L. 1998. A comparison of encephalization between odontocete cetaceans and anthropoid primates. Brain, Behavior and Evolution 51:230238.
Marino, L., Uhen, M. D., Frohlich, B., Aldag, J. M., Blane, C., Bohaska, D., and Whitmore, F. C. Jr. 2000. Endocranial volume of mid–late Eocene archaeocetes (Order: Cetacea) revealed by computed tomography: implications of cetacean brain evolution. Journal of Mammalian Evolution 7:8194.
Marino, L., McShea, D. W., and Uhen, M. D. 2004. Origin and evolution of large brains in toothed whales. Anatomical Record Part A 218A:12471255.
Marino, L., Connor, R. C., Fordyce, R. E., Herman, L. M., Hof, P. R., Lefebvre, L., Lusseau, D., McCowan, B., Nimchinsky, E. A., Pack, A. A., Rendell, L., Reidenberg, J. S., Reiss, D., Uhen, M. D., van der Gucht, E., and Whitehead, H. 2007. Cetaceans have complex brains for complex cognition. PLoS Biology 5:09660972.
Martin, R. D. 1990. Primate origins and evolution: a phylogenetic reconstruction. Chapman and Hall, London.
Martin, R. D. 1996. Scaling of the mammalian brain: the maternal energy hypothesis. News in Physiological Sciences 11:149156.
Martin, R. D., and McLarnon, A. M. 1985. Gestation period, neonatal size and maternal investment in placental mammals. Nature 313:220223.
Midford, P. E., Garland, T. J., and Maddison, D. R. 2008. PDAP: PDTREE package for Mesquite, Version 1.12. http://mesquiteproject.org/pdap_mesquite/.
Osborne, M. J., Christidis, L., and Norman, J. A. 2002. Molecular phylogenetics of the Diprotodontia (kangaroos, wombats, possums, and allies). Molecular Phylogenetics and Evolution 25:219228.
Pagel, M. D., and Harvey, P. H. 1988. How mammals produce large-brained offspring. Evolution 42:948957.
Pérez-Barberia, F. J., and Gordon, I. J. 2005. Gregariousness increases brain size in ungulates. Oecologia 145:4152.
Pérez-Barberia, F. J., Shultz, S., and Dunbar, R. I. M. 2007. Evidence for coevolution of sociality and relative brain size in three orders of mammals. Evolution 61:28112821.
Phillips, M. J., Bennett, T. H., and Lee, M. S. Y. 2009. Molecules, morphology, and ecology indicate a recent, amphibious ancestry for echidnas. Proceedings of the National Academy of Sciences USA 106:1708917094.
R Development Core Team. 2009. R: a language and environment for statistical computing, Version 2.7.0. R Foundation for Statistical Computing, Vienna.
Radinsky, L. B. 1969. Outlines of canid and felid brain evolution. Annals of the New York Academy of Sciences 167:277288.
Radinsky, L. B. 1975. Evolution of the felid brain. Brain, Behavior and Evolution 11:214254.
Radinsky, L. B. 1977. Early primate brains: facts and fiction. Journal of Human Evolution 6:7986.
Radinsky, L. B. 1985. Approaches in evolutionary morphology: a search for patterns. Annual Review of Ecology, Evolution, and Systematics 16:114.
Rowe, T. 1996. Coevolution of the mammalian middle ear and neocortex. Science 273:651653.
Rowe, T., Macrini, T. E., and Luo, Z.-X. 2011. Fossil evidence on the origin of the mammalian brain. Science 332:955957.
Seiffert, E. R. 2007. A new estimate of afrotherian phylogeny based on simultaneous analysis of genomic, morphological, and fossil evidence. BMC Evolutionary Biology 7:224.
Shultz, S., and Dunbar, R. I. M. 2006. Both social and ecological factors predict ungulate brain size. Proceedings of the Royal Society of London B 273:207215.
Sol, D., Stirling, D. Gray, and Lefebvre, L. 2007. Behavioural drive or behavioural inhibition in evolution: subspecific diversification in holarctic passerines. Evolution 59:2669–2667.
Sol, D., Bacher, S., Reader, S. M., and Lefebvre, L. 2008. Brain size predicts the success of mammal species introduced into novel environments. American Naturalist 172:S63S71.
Steppan, S. J., Storz, B. L., and Homann, R. S. 2004. Nuclear DNA phylogeny of the squirrels (Mammalia: Rodentia) and the evolution of arboreality from c-myc and RAG1. Molecular Phylogenetics and Evolution 30:703719.
Vaisnys, J., Lieberman, D., and Pilbeam, D. 1984. An alternative method of estimating the cranial capacity of Olduvai Hominid 7. American Journal of Physical Anthropology 65:7181.
Walker, A., Falk, D., Smith, R. and Pickford, M. 1984. The skull of Proconsul africanus: reconstruction and cranial capacity. Nature 305:525527.
Walker, E. P., and Nowak, R. M., eds. 1999. Walker's mammals of the world. Johns Hopkins University Press, Baltimore.
Weisbecker, V., and Goswami, A. 2010. Brain size, life history, and metabolism at the marsupial/placental dichotomy. Proceedings of the National Academy of Sciences USA 107:1621616221.
Wesley-Hunt, G. D. 2005. The morphological diversification of carnivores in North America. Paleobiology 31:3555.
Williams, M. F. 2002. Primate encephalization and intelligence. Medical Hypothesis 58:284290.
Wilson, D., and Reeder, D. M. 2005. Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore.
Wroe, S., and Milne, N. 2007. Convergence and remarkably consistent constraint in the evolution of carnivore skull shape. Evolution 61:12511260.
Zrzavy, J., and Ricanova, V. 2004. Phylogeny of recent Canidae (Mammalia, Carnivora): relative reliability and utility of morphological and molecular datasets. Zoologica Scripta 33:311333.

Multiple regression modeling for estimating endocranial volume in extinct Mammalia

  • Laura C. Soul (a1), Roger B. J. Benson (a1) and Vera Weisbecker (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed