Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T04:16:19.143Z Has data issue: false hasContentIssue false

Morphological convergence of the prey-killing arsenal of sabertooth predators

Published online by Cambridge University Press:  08 April 2016

Abstract

Sabertooth members of the Felidae, Nimravidae, and Barbourofelidae are well-known for their elongated saber-shaped canines. However, within these groups, there is a wide range of independently derived tooth shapes and lengths, including dirk-tooth and scimitar-tooth morphs. In conjunction with the saberteeth, forelimbs were also used to subdue prey. Thus, there may be a functional link between canine shape and forelimb morphology. Because there are no living sabertooth forms for comparison, extant felids make a good proxy for examining the morphology of these extinct organisms. Here, I examine the forelimb morphology of different sabertooth groups from across North America; I address whether forelimb morphologies are associated with tooth morphologies, and whether these associated tooth and forelimb morphologies are convergent among different families. To answer these questions, I analyzed six functional indices of the forelimbs and two canine characters for 13 species of sabertooth predators and 15 extant felid species. Results indicate that sabertooth morphs with longer, thinner canines show more robust limb proportions. These patterns were convergent among sabertooth felids, nimravids, and barbourofelids, and indicate a positive functional relationship between saber elongation and increased forelimb robustness. This suggests that sabertooth carnivorans demonstrated niche partitioning of predation strategies according to canine shape and corresponding forelimb morphology.

Type
Feature Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Akersten, W. A. 1985. Canine function in Smilodon (Mammalia: Felidae: Machairodontidae). Contributions in Science (Los Angeles) 356:122.Google Scholar
Albright, L. B. III, Woodburne, M. O., Fremd, T. J., Swisher, C. C. III, MacFadden, B. J., and Scott, G. R. 2008. Revised chronostratigraphy and biostratigraphy of the John Day Formation (Turtle Cove and Kimberly Members), Oregon, with implications for updated calibration of the Arikareean North American Land Mammal Age. Journal of Geology 116:211237.Google Scholar
Antón, M., and Galobart, Á. 1999. Neck function and predatory behavior in the scimitar toothed cat Homotherium latidens (Owen). Journal of Vertebrate Paleontology 19:771784.Google Scholar
Antón, M., Salesa, M. J., Morales, J., and Turner, A. 2004. First known complete skulls of the scimitar-toothed cat Machairodus aphanistus (Felidae, Carnivora) from the Spanish Late Miocene site of Batallones-1. Journal of Vertebrate Paleontology 24:957969.Google Scholar
Antón, M., Galobart, Á., and Turner, A. 2005. Co-existence of scimitar-toothed cats, lions and hominins in the European Pleistocene: implications of the post-cranial anatomy of Homotherium latidens (Owen) for comparative palaeoecology. Quaternary Science Reviews 24:12871301.Google Scholar
Anyonge, W. 1993. Body mass in large extant and extinct carnivores. Journal of Zoology, London 231:339350.Google Scholar
Anyonge, W. 1996a. Microwear on canines and killing behavior in large carnivores: saber function in Smilodon fatalis. Journal of Mammalogy 77:10591067.Google Scholar
Anyonge, W. 1996b. Locomotor behavior in Plio-Pleistocene saber-tooth cats: a biomechanical analysis. Journal of Zoology, London 238:395413.Google Scholar
Argot, C. 2004. Functional-adaptive features and palaeobiologic implications of the postcranial skeleton of the late Miocene sabretooth borhyaenoid Thylacosmilus atrox (Metatheria). Alcheringa 28:229266.Google Scholar
Baskin, J. 1981. Barbourofelis (Nimravidae) and Nimravides (Felidae), with a description of two new species from the Late Miocene of Florida. Journal of Mammalogy 62:122139.Google Scholar
Berta, A. 1995. Fossil carnivores from the Leisey Shell Pits, Hillsborough County, Florida. Bulletin of the Florida Museum of Natural History 37:463499.Google Scholar
Biknevicius, A. R., and Van Valkenburgh, B. 1996. Design for killing: craniodental adaptations of predators. Pp. 393428 in Gittleman, J., ed. Carnivore behavior, ecology, and evolution, Vol. 2. Cornell University Press, Ithaca, N.Y.Google Scholar
Bryant, H. N. 1991. Phylogenetic relationships and systematics of the Nimravidae (Carnivora). Journal of Mammalogy 72:5678.Google Scholar
Bryant, H. N. 1996. Force generation by the jaw adductor musculature at different gapes in the Pleistocene sabretoothed felid Smilodon. Pp. 283299 in Steward, K. M.and Seymour, K. L., eds. Paleoecology and paleoenvironments of Late Cenozoic Mammals. University of Toronto Press, Toronto.Google Scholar
Cartmill, M. 1985. Climbing. Pp. 7388 in Hildebrand, M., Bramble, D. M., Liem, K. F., and Wake, D. B., eds. Functional vertebrate morphology. Harvard University Press, Cambridge.Google Scholar
Christiansen, P. 2006. Sabertooth characters in the clouded leopard (Neofelis nebulosa Griffiths 1). Journal of Morphology 267:11861198.Google Scholar
Christiansen, P. 2007. Canine morphology in the larger Felidae: implications for feeding ecology. Biological Journal of the Linnean Society 91:573592.Google Scholar
Christiansen, P. 2008. Evolutionary convergences of primitive sabertooth craniomandibular morphology: the clouded leopard (Neofelis nebulosa) and Paramachairodus ogygia compared. Journal of Mammalian Evolution 15:155179.Google Scholar
Christiansen, P. 2011. A dynamic model for the evolution of sabrecat predatory bite mechanics. Zoological Journal of the Linnean Society 162:220242.Google Scholar
Christiansen, P., and Harris, J. M. 2005. Body size of Smilodon (Mammalia: Felidae). Journal of Morphology 266:369384.Google Scholar
Eizirik, E., Murphy, W. J., Koepfli, K-P., Johnson, W. E., Dragoo, J. W., Wayne, R. K., and O'Brien, S. J. 2010. Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Molecular Phylogenetics and Evolution 56:4963.Google Scholar
Elissamburu, A., and Vizcaíno, S. F. 2004. Limb proportions and adaptations in caviomorph rodents (Rodentia: Caviomorpha). Journal of Zoology, London 262:145159.Google Scholar
Emerson, S. B., and Radinsky, L. 1980. Functional analysis of sabertooth cranial morphology. Paleobiology 6:295312.Google Scholar
Ewer, R. F. 1973. The carnivores. Cornell University Press, Ithaca, N.Y.Google Scholar
Falster, D. S., Warton, D. I., and Wright, I. J. 2006. SMATR: standardized major axis tests & routines. Macquarie University, Sydney. http://www.bio.mq.edu.au/ecology/SMATR/Google Scholar
Gonyea, W. J. 1976. Behavioral implications of saber-toothed felid morphology. Paleobiology 2:332342.Google Scholar
Gonyea, W. J. 1978. Functional implications of felid forelimb morphology. Acta Anatomica 102:111121.Google Scholar
Grassman, L. I. 2001. Spatial ecology and conservation of the felid community in Phu Khieo Wildlife Sanctuary, Thailand. Report to Cat Action Treasury.Google Scholar
Jungers, W. L., Lemelin, P., Godfrey, L. R., Wunderlich, R. E., Burney, D. A., Simons, E. L., Chatrath, P. S., James, H. F., and Randria, G. F. N. 2005. The hands and feet of Archaeolemur: metrical affinities and their functional significance. Journal of Human Evolution 49:3655.Google Scholar
Kirk, E. C., Lemelin, P., Hamrick, M. W., Boyer, D. M., and Bloch, J. I. 2008. Intrinsic hand proportions of euarchontans and other mammals: implications for the locomotor behavior of plesiadapiforms. Journal of Human Evolution 55:278299.Google Scholar
Kurtén, B. 1963. Notes on some Pleistocene mammal migrations from the Palaearctic to the Nearctic. Eiszeitalter und Gegenwart 14:96103.Google Scholar
Lammers, A. R., and Zurcher, U. 2009. How does a small arboreal mammal use its tail to maintain its balance while traveling on tree branches? Integrative and Comparative Biology 49:E96.Google Scholar
Larson, S. G., and Stern, J. T. 2006. Maintenance of above-branch balance during primate arboreal quadrupedalism: coordinated use of forearm rotators and tail motion. American Journal of Physical Anthropology 129:7181.Google Scholar
Legendre, S., and Roth, C. 1988. Correlation of carnassial tooth size and body weight in recent carnivores (Mammalia). Historical Biology 1:8598.Google Scholar
Lewis, M. E. 1996. Ecomorphology of the African sabertooth felid Homotherium. Journal of Vertebrate Paleontology 16 (Suppl.):48.Google Scholar
Lewis, M. E. 1997. Carnivoran paleoguilds of Africa: implications for hominid food procurement strategies. Journal of Human Evolution 32:257288.Google Scholar
Lewis, M. E., and Lague, M. R. 2010. Interpreting sabertooth cat (Carnivora; Felidae; Machairodontinae) postcranial morphology in light of scaling patterns in felids. Pp. 411 in Goswami, A.and Friscia, A. R., eds. Carnivoran evolution: new views on phylogeny, form and function. Cambridge University Press, Cambridge.Google Scholar
Martin, L. D. 1980. Functional morphology and the evolution of cats. Transactions of the Nebraska Academy of Science 8:141154.Google Scholar
Martin, L. D. 1989. Fossil history of the terrestrial Carnivora. Pp. 536568 in Gittleman, J. L., ed. Carnivore behavior, ecology, and evolution, Vol. 1. Cornell University Press, Ithaca, N.Y.Google Scholar
Martin, L. D. 1998a. Nimravidae. Pp. 236242 in Janis, C. M., Scott, K. M., and Jacobs, L. L., eds. Evolution of Tertiary mammals of North America, Vol. 1. Terrestrial carnivores, ungulates, and ungulatelike mammals. Cambridge University Press, Cambridge.Google Scholar
Martin, L. D. 1998b. Felidae. Pp. 236242 in Janis, C. M., Scott, K. M., and Jacobs, L. L., eds. Evolution of Tertiary mammals of North America, Vol. 1. Terrestrial carnivores, ungulates, and ungulatelike mammals. Cambridge University Press, Cambridge.Google Scholar
Martin, L. D., Babiarz, J. P., Naples, V. L., and Hearst, J. 2000. Three ways to be a saber-toothed cat. Naturwissenschaften 87:4144.Google Scholar
Matsuda, I., Tuuga, A., and Higashi, S. 2008. Clouded leopard (Neofelis diardi) predation on proboscis monkeys (Nasalis larvatus) in Sabah, Malaysia. Primates 49:227231.Google Scholar
Matthew, W. D. 1910. The phylogeny of the Felidae. Bulletin of the American Museum of Natural History 38:289316.Google Scholar
McHenry, C., Wroe, S., Clausen, P. D., Moreno, K., and Cunningham, E. 2007. Supermodeled sabercat, predatory behavior in Smilodon fatalis revealed by high-resolution 3D computer simulation. Proceedings of the National Academy of Sciences USA 104:1601016015.Google Scholar
Meachen-Samuels, J. A., and Van Valkenburgh, B. 2009a. Craniodental indicators of prey-size preference in the Felidae. Biological Journal of the Linnean Society 96:784799.Google Scholar
Meachen-Samuels, J. A., and Van Valkenburgh, B. 2009b. Forelimb indicators of prey-size preference in the Felidae. Journal of Morphology 270:729744.Google Scholar
Meachen-Samuels, J. A., and Van Valkenburgh, B. 2010. Radiographs reveal exceptional forelimb strength in the sabertooth cat, Smilodon fatalis. PLoS ONE 5:e11412.Google Scholar
Meehan, T. J., and Martin, L. D. 2003. Extinction and re-evolution of similar adaptive types (ecomorphs) in Cenozoic North American ungulates and carnivores reflect van der Hammen's cycles. Naturwissenschaften 90:131135.Google Scholar
Peigné, S. 2003. Systematic review of European Nimravinae (Mammalia, Carnivora, Nimravidae) and the phylogenetic relationships of Palaeogene Nimravidae. Zoologica Scripta 32:199229.Google Scholar
Rasband, W. S. 2007. ImageJ. U.S. National Institutes of Health, Bethesda, Md. http://rsb.info.nih.gov/ij/Google Scholar
Ruff, C. B. 2000. Body size, body shape, and long bone strength in modern humans. Journal of Human Evolution 38:269290.Google Scholar
Salesa, M. J., Antón, M., Turner, A., and Morales, J. 2010. Functional anatomy of the forelimb in Promegantereon ogygia (Felidae, Machairodontinae, Smilodontini) from the Late Miocene of Spain and the origins of the saber-toothed felid model. Journal of Anatomy 216:381396.Google Scholar
Samuels, J. X., and Van Valkenburgh, B. 2008. Skeletal indicators of locomotor adaptations in living and extinct rodents. Journal of Morphology 269:13871411.Google Scholar
Schaller, G. B. 1967. The deer and the tiger. University of Chicago Press, Chicago.Google Scholar
Schaller, G. B. 1972. The Serengeti lion: a study of predator-prey relationships. University of Chicago Press, Chicago.Google Scholar
Schultz, C. B., and Martin, L. D. 1970. Machairodont cats from the early Pleistocene Broadwater and Lisco local faunas. Bulletin of the University of Nebraska State Museum 9:3338.Google Scholar
Slater, G. J., and Van Valkenburgh, B. 2008. Long in the tooth: evolution of sabertooth cat cranial shape. Paleobiology 34:403419.Google Scholar
Smith, F. A., Lyons, S. K., Ernest, K. M., Jones, K. E., Kaufman, D. M., Dayan, T., Marquet, P. A., Brown, J. H., and Haskell, J. P. 2003. Body mass of Late Quaternary mammals. Ecology 84:3404.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1995. Biometry: the principles and practices of statistics in biological research, 3rd ed. W. H. Freeman, New York.Google Scholar
Sunquist, M., and Sunquist, F. 2002. Wildcats of the world. University of Chicago Press, Chicago.Google Scholar
Tejada-Flores, A. E., and Shaw, C. A. 1984. Tooth replacement and skull growth in Smilodon from Rancho La Brea. Journal of Vertebrate Paleontology 4:114121.Google Scholar
Therrien, F. 2005. Mandibular force profiles of extant carnivorans and implications for the feeding behaviors of extinct predators. Journal of Zoology 267:249270.Google Scholar
Turner, A., and Antón, M. 1997. The big cats and their fossil relatives. Columbia University Press, New York.Google Scholar
Van Valkenburgh, B. 1985. Locomotor diversity within past and present guilds of large predatory mammals. Paleobiology 11:406428.Google Scholar
Van Valkenburgh, B. 1987. Skeletal indicators of locomotor behavior in living and extinct carnivores. Journal of Vertebrate Paleontology 7:162182.Google Scholar
Van Valkenburgh, B. 1990. Skeletal and dental predictors of body mass in carnivores. Pp. 181206 in Damuth, J.and MacFadden, B., eds. Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press, Cambridge.Google Scholar
Van Valkenburgh, B. 1991. Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators. Paleobiology 17:340362.Google Scholar
Van Valkenburgh, B., and Hertel, F. 1993. Tough times at La Brea: tooth breakage in large carnivores of the Late Pleistocene. Science 261:456459.Google Scholar
Van Valkenburgh, B., and Koepfli, K. P. 1993. Cranial and dental adaptations to predation in canids. Symposium of the Zoological Society of London 65:1537.Google Scholar
Van Valkenburgh, B., and Ruff, C. B. 1987. Canine tooth strength and killing behavior in large carnivores. Journal of Zoology, London 212:379397.Google Scholar
Van Valkenburgh, B., Teaford, M. F., and Walker, A. 1990. Molar microwear and diet in large carnivores: inferences concerning diet in the sabertooth cat Smilodon fatalis. Journal of Zoology, London 222:319340.Google Scholar
Wroe, S., McHenry, C., and Thomason, J. 2005. Bite club: comparative bite force in big biting mammals and the prediction of predatory behavior in fossil taxa. Proceedings of the Royal Society of London B 272:619625.Google Scholar
Wroe, S., Lowry, M. B., and Antón, M. 2008. How to build a mammalian super-predator. Zoology 111:196203.Google Scholar