Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T05:40:16.754Z Has data issue: false hasContentIssue false

A model for planktic foraminiferal shell growth

Published online by Cambridge University Press:  08 February 2016

Miguel Signes
Affiliation:
Departamento de Geología, Facultat de Ciencias Biológicas, Universitat de València, 46100-Burjassot, Spain
Jelle Bijma
Affiliation:
Geologisches-Paläontologisches Institut, Universität Tübingen, Sigwartstrasse 10, 7400-Tübingen, West Germany
Christoph Hemleben
Affiliation:
Geologisches-Paläontologisches Institut, Universität Tübingen, Sigwartstrasse 10, 7400-Tübingen, West Germany
Rolf Ott
Affiliation:
Geologisches-Paläontologisches Institut, Universität Tübingen, Sigwartstrasse 10, 7400-Tübingen, West Germany

Abstract

In this paper we analyze the laws of growth that control planktic foraminiferal shell morphology. We assume that isometry is the key toward the understanding of their ontogeny. Hence, our null hypothesis is that these organisms construct isometric shells. To test this hypothesis, geometric models of their shells have been generated with a personal computer. It is demonstrated that early chambers in log-spirally coiled structures cannot follow a strict isometric arrangement. In the real world, the centers of juvenile chambers deviate from the logarithmic growth curve. Juvenile stages are generally more planispiral and contain more chambers per whorl than adult stages. These traits are shown to be essential in order to keep volumes of consecutive chambers in geometric progression. We are convinced that the neanic stage marks the constructional bridge from a juvenile set of growth parameters to an adult one. The adult stage can be strictly isometric, that is, the effective shape is constant and the increase in volume after a chamber addition is proportional to the preexisting volume of the shell.

The shell volume is related to the biomass, the ratio of outer shell surface area to shell volume is related to the respiration rate and the ratio of the total shell surface area to shell volume is related to the total calcification effort. The influence of the parameters of the model on these relationships is investigated. Only the initial radius and the rate of radius increase affect the relationships between shell volume and surface area. The other shape parameters merely provide a fine tune-up of these relationships. Size itself plays a major role during foraminiferal development.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ackerly, S. C. 1989. The kinematics of accretionary shell growth, with examples from brachiopods and molluscs. Paleobiology 15:147164.CrossRefGoogle Scholar
Anderson, O. R., and Faber, W. W. Jr. 1984. An estimation of calcium carbonate deposition rate in a planktonic foraminifer Globigerinoides sacculifer using 45Ca as a tracer: a recommended procedure for improved accuracy. Journal of Foraminiferal Research 14:303308.CrossRefGoogle Scholar
Banner, F. T. 1982. A classification and introduction to the Globigerinacea. Pp. 142239in Banner, F. T. and Lord, A. R., eds. Aspects of micropaleontology. Allen and Unwin, London.CrossRefGoogle Scholar
Berger, W. H. 1969. Planktonic foraminifera: basic morphology and ecologic implications. Journal of Paleontology 43:13691383.Google Scholar
Berthold, W. U., Gocht, H., Hemleben, Ch., and Netzel, H. 1976. Cytologische und Ökologische Aspecte der Morphogenese und Struktur rezenter und fossiler Protisten-Skelette. Zentralblatt für Geologie und Paläontologie 2:325338.Google Scholar
Bijma, J., Erez, J., and Hemleben, Ch. 1990. Lunar and semilunar reproductive cycles in some spinose planktonic foraminifers. Journal of Foraminiferal Research 20:117127.CrossRefGoogle Scholar
Bonner, J. T. 1982. Evolution and development. Springer, Berlin.CrossRefGoogle Scholar
Bookstein, F. L. 1986. Size and shape spaces for landmark data in two dimensions. Statistical Science 1:181242.Google Scholar
Bookstein, F. L. 1989. “Size and shape”: a comment on semantics. Systematic Zoology 38:173180.CrossRefGoogle Scholar
Bookstein, F. L., Chernoff, B., Elder, R., Humphries, J., Smith, G., and Strauss, R. 1985. Morphometrics in evolutionary biology. Special Publication 15. Academy of Natural Science of Philadelphia, Philadelphia.Google Scholar
Brasier, M. D. 1982. Architecture and evolution of the foraminiferid test: a theoretical approach. Pp. 141in Banner, F. T. and Lord, A. R., eds. Aspects of micropaleontology. Allen and Unwin, London.Google Scholar
Brasier, M. D. 1986. Form, function and evolution in benthic and planktic foraminiferid test architecture. Pp. 251268in Leadbeater, B. and Riding, R., eds. Biomineralization in lower plants and animals. Clarendon, Oxford.Google Scholar
Brummer, G.J.A., Hemleben, Ch., and Spindler, M. 1986. Planktonic foraminiferal ontogeny and new perspectives for micropaleontology. Nature (London) 319:5052.CrossRefGoogle Scholar
Brummer, G.J.A. 1987. Ontogeny of extant spinose planktonic foraminifera (Globigerinidae): a concept exemplified by Globigerinoides sacculifer and G. ruber. Marine Micropaleontology 12:357381.CrossRefGoogle Scholar
Cifelli, R. 1969. Radiation of Cenozoic planktonic foraminifera. Systematic Zoology 18:154168.CrossRefGoogle Scholar
De Renzi, M. 1982. La forma orgànica: un pretext per a establir contacte amb alguns problemes de fons de la biologia. Pp. 351388in Estudios dedicados a Juan Peset Aleixandre. Universidad de Valencia, Valencia.Google Scholar
De Renzi, M. 1988. Shell coiling in some larger foraminifera: general comments and problems. Paleobiology 14:387400.CrossRefGoogle Scholar
Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews of the Cambridge Philosophical Society 41:587640.CrossRefGoogle ScholarPubMed
Gould, S. J. 1968. Ontogeny and the explanation of form: an allometric analysis. In D. B. Macurda, ed. Paleobiological aspects of growth and development, a symposium. Paleontological Society Memoirs 2. Journal of Paleontology 42:8198 (suppl.).Google Scholar
Gould, S. J. 1970. Evolutionary paleontology and the science of form. Earth-Science Reviews 6:77119.CrossRefGoogle Scholar
Gould, S. J. 1988. Trends as changes in variance: a new slant on progress and directionality in evolution. Journal of Paleontology 62:319329.CrossRefGoogle Scholar
Hart, M. B. 1980. A water depth model for the evolution of the planktonic Foraminiferida. Nature (London) 286:252254.CrossRefGoogle Scholar
Healy-Williams, N., and Williams, D. F. 1981. Fourier analysis of test shape of planktonic foraminifera. Nature (London) 289:485487.CrossRefGoogle Scholar
Hemleben, Ch., Spindler, M., and Anderson, O. R. 1989. Modern planktonic foraminifera. Springer, New York.CrossRefGoogle Scholar
Hickman, C. S. 1980. Gastropod radulae and the assessment of form in evolutionary paleontology. Paleobiology 6:276294.CrossRefGoogle Scholar
Hottinger, L. 1984. Foraminifères de grande taille: signification des structures complexes de la coquille. Pp. 309315in Benthos'83; 2nd International Symposium on Benthic Foraminifera (Pau, April 1983), Pau and Bordeaux, March 1983.Google Scholar
Hottinger, L. 1986. Construction, structure and function of foraminiferal shells. Pp. 219235in Leadbeater, B. and Riding, R., eds. Biomineralisation in lower plants and animals. Clarendon, Oxford.Google Scholar
Huber, B. T. 1987. Ontogenetic morphometrics of some Upper Cretaceous foraminifera from the southern high latitudes. Antarctic Journal of the United States 22(5):1517.Google Scholar
Kennett, J. P., and Srinivasan, M. S. 1983. Neogene planktonic foraminifera: a phylogenetic atlas. Hutchinson Ross, Stroudsburg, Pa.Google Scholar
Lebreton, J. D., and Millier, C. 1982. Modèles dynamiques déterministes en biologie. Masson, Paris.Google Scholar
Leutenegger, S., and Hansen, H. J. 1979. Ultrastructure radiotracer studies of pore function in foraminifera. Marine Biology 54:1116.CrossRefGoogle Scholar
Lohmann, P. 1983. Eigenshape analysis of microfossils: a general morphometric procedure for describing changes in shape. Mathematical Geology 15:659672.CrossRefGoogle Scholar
Macleod, N., and Kitchell, J. A. 1990. Morphometrics and evolutionary inference: a case study involving ontogenetic and developmental aspects of evolution. Pp. 283299in Rohlf, F. J. and Bookstein, F. L., eds. Proceedings of the Michigan Morphometrics Workshop. Museum of Zoology. Special Publication 2, The University of Michigan.Google Scholar
Malmgren, B. A., and Kennett, J. P. 1976. Biometric analysis of phenotypic variation in recent Globigerina bulloides d'Orbigny in the southern Indian Ocean. Marine Micropaleontology 1:325.CrossRefGoogle Scholar
Marszalek, D. S., Wright, R. L., and Hay, W. W. 1969. Function of the test in Foraminifera. Transactions of the Gulf Coast Association of Geological Societies 19:341352.Google Scholar
Moseley, H. 1938. On the geometric form of turbinate and discoid shells. Philosophical Transactions of the Royal Society, London 128:351370.Google Scholar
Norris, R. D. 1991. Biased extinction and evolutionary trends. Paleobiology 17:388399.CrossRefGoogle Scholar
Okamoto, T. 1988. Analysis of heteromorph ammonoids by differential geometry. Palaeontology 31:3552.Google Scholar
Olsson, R. K. 1971. The logarithmic spire in planktonic foraminifera: its use in taxonomy, evolution, and paleoecology. Transactions of the Gulf Coast Association of Geological Societies 21:419432.Google Scholar
Olsson, R. K. 1972. Growth changes in the Globorotalia fohsi lineage. Eclogae Geologica Helveltica 65:165184.Google Scholar
Olsson, R. K. 1973. Growth studies on Globorotalia exilis Blow and Globorotalia pertenius Beard in the hole 154A section, leg 15, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project XV 14:617624.Google Scholar
Ott, R., Signes, M., Bijma, J., and Hemleben, Ch. 1992. A computer method for estimating volumes and surface areas of complex structures consisting of overlapping spheres. Mathematical and Computer Modeling.CrossRefGoogle Scholar
Parker, F. L. 1962. Planktonic foraminiferal species in Pacific sediments. Micropaleontology 8:219254.CrossRefGoogle Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Raup, D. M. 1972. Approaches to morphologic analysis. Pp. 2845in Schopf, T.J.M., ed. Models in paleobiology. Freeman, Cooper, San Francisco.Google Scholar
Raup, D. M., and Michelson, A. 1965. Theoretical morphology of the coiled shell. Science (Washington, D.C.) 147:12941295.CrossRefGoogle ScholarPubMed
Reiss, Z. 1957. The Bilamellidea, nov. superfam., and remarks on Cretaceous globorotaliids. Cushman Foundation of Foraminiferal Research, Contributions 8:127145.Google Scholar
Riegraf, W. 1987. Planktonic foraminifera (Globuligerinidae) from the Callovian (Middle Jurassic) of Southwest Germany. Journal of Foraminiferal Research 17:190211.CrossRefGoogle Scholar
Rohlf, F. J. 1990. Morphometrics. Annual Review of Ecology and Systematics 21:299316.CrossRefGoogle Scholar
Rohlf, F. J., and Bookstein, F. L., eds. 1990. Proceedings of the Michigan Morphometrics Workshop. Museum of Zoology. Special Publication 2, The University of Michigan.Google Scholar
Scott, G. H. 1970. Basal Miocene correlation: Globigerinoides from southern New Zealand. Micropaleontology 16:385398.CrossRefGoogle Scholar
Scott, G. H. 1972. The relationship between the Miocene Foraminiferida Globorotaliamiozea and G. praemenardii. Micropaleontology 18:8193.CrossRefGoogle Scholar
Scott, G. H. 1973. Ontogeny and shape in Globorotalia menardii. Journal of Foraminiferal Research 3:142146.CrossRefGoogle Scholar
Scott, G. H. 1974. Biometry of the foraminiferal shell. Pp. 55151in Hedley, R. H. and Adams, C. G., eds. Foraminifera 1. Academic Press, London.Google Scholar
Seilacher, A. 1970. Arbeitskonzept zur Konstruktions-Morphologie. Lethaia 3:393396.CrossRefGoogle Scholar
Signes, M., De Renzi, M., and Marquez, L. 1988. A study of spiral coiling in Operculina. Revue de Paléobiologie 2:885893.Google Scholar
Stanley, S. M. 1973. An explanation for Cope's rule. Evolution 27:126.CrossRefGoogle ScholarPubMed
Sverdlove, M. S., and , A.W.H. 1985. Taxonomic and ecological significance of embryonic and juvenile planktonic foraminifera. Journal of Foraminiferal Research 15:235241.CrossRefGoogle Scholar
Tabachnick, R. E., and Bookstein, F. L. 1990a. The structure of individual variation in Miocene Globorotalia. Evolution 44:416434.CrossRefGoogle ScholarPubMed
Tabachnick, R. E. 1990b. Resolving factors of landmark deformation: Miocene Globorotalia, DSDP site 593. Pp. 269281in Rohlf, F. J. and Bookstein, F. L., eds. Proceedings of the Michigan Morphometrics Workshop. Museum of Zoology. Special Publication 2, The University of Michigan.Google Scholar
Tappan, H., and Loeblich, A. R. Jr. 1988. Foraminiferal evolution, diversification and extinction. Journal of Paleontology 62:695714.Google Scholar
Thom, R. 1977. Stabilité structurelle et morphogénèse. Inter Editions, Paris.Google Scholar
Thompson, D'A. W. 1942. On growth and form, 2d ed. Reprinted in 1972. Cambridge University Press, Cambridge.Google Scholar
Waddington, C. H. 1968. Towards a theoretical biology. 1. Prolegonema. IUBS symposium. University Press, Edinburgh.Google Scholar