Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T19:42:22.481Z Has data issue: false hasContentIssue false

The Mesozoic marine revolution: evidence from snails, predators and grazers

Published online by Cambridge University Press:  08 April 2016

Geerat J. Vermeij*
Affiliation:
Department of Zoology. University of Maryland, College Park, Maryland 20742

Abstract

Tertiary and Recent marine gastropods include in their ranks a complement of mechanically sturdy forms unknown in earlier epochs. Open coiling, planispiral coiling, and umbilici detract from shell sturdiness, and were commoner among Paleozoic and Early Mesozoic gastropods than among younger forms. Strong external sculpture, narrow elongate apertures, and apertural dentition promote resistance to crushing predation and are primarily associated with post-Jurassic mesogastropods, neogastropods, and neritaceans. The ability to remodel the interior of the shell, developed primarily in gastropods with a non-nacreous shell structure, has contributed greatly to the acquisition of these antipredatory features.

The substantial increase of snail-shell sturdiness beginning in the Early Cretaceous has accompanied, and was perhaps in response to, the evolution of powerful, relatively small, shell-destroying predators such as teleosts, stomatopods, and decapod crustaceans. A simultaneous intensification of grazing, also involving skeletal destruction, brought with it other fundamental changes in benthic community structure in the Late Mesozoic, including a trend toward infaunalization and the disappearance or environmental restriction of sessile animals which cannot reattach once they are dislodged. The rise and diversification of angiosperms and the animals dependent on them for food coincides with these and other Mesozoic events in the marine benthos and plankton.

The new predators and prey which evolved in conjunction with the Mesozoic reorganization persisted through episodes of extinction and biological crisis. Possibly, continental breakup and the wide extent of climatic belts during the Late Mesozoic contributed to the conditions favorable to the evolution of skeleton-destroying consumers. This tendency may have been exaggerated by an increase in shelled food supply resulting from the occupation of new adaptive zones by infaunal bivalves and by shell-inhabiting hermit crabs.

Marine communities have not remained in equilibrium over their entire geological history. Biotic revolutions made certain modes of life obsolete and resulted in other adaptive zones becoming newly occupied.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Awramik, S. M. 1971. Precambian columnar stramatolite diversity: reflection of metazoan appearance. Science. 174:825827.CrossRefGoogle Scholar
Bakker, R. T. 1972. Anatomical and ecological evidence of endothermy in dinosaurs. Nature. 238:8185.Google Scholar
Bakker, R. T. 1975. Experimental and fossil evidence for the evolution of tetrapod bioenergetics. pp. 365399. In: Gates, D. and Schmerl, R., eds. Perspectives of Biophysical Ecology. Springer-Verlag; New York.CrossRefGoogle Scholar
Bigelow, H. B. and Schroeder, W. C. 1953. Fishes of the Western North Atlantic. Part II, Sawfishes, guitarfishes, skates and rays. Mem. Sears Found. Mar. Res. 1:1585.Google Scholar
Boss, K. J. 1971. Critical estimate of the number of Recent Mollusca. Occas. Pap. on Mollusks, Mus. Comp. Zool. 3:81135.Google Scholar
Boucot, A. J. 1975. Evolution and Extinction Rate Controls. 427 pp. Elsevier Sci. Publ. Co.; Amsterdam, Netherlands.Google Scholar
Bowsher, A. L. 1955. Origin and adaptation of platyceratid gastropods. Kansas Univ. Paleontol. Contrib. 17 (Mollusca, Article 5):111.Google Scholar
Boyd, D. W. and Newell, N. D. 1972. Taphonomy and diagenesis of a Permian fossil assemblage from Wyoming. J. Paleontol. 46:114.Google Scholar
Brasier, M. D. 1975. An outline history of sea-grass communities. Palaeontology. 18:681702.Google Scholar
Bright, T. J. 1970. Food of deep-sea bottom fishes. Texas A&M Univ. Oceanogr. Studies. 1:245252.Google Scholar
Bromley, R. G. 1975. Comparative analysis of fossil and Recent echinoid bioerosion. Palaeontology. 18:725739.Google Scholar
Carriker, M. R. 1972. Observations on the removal of spines by muricid gastropods during shell growth. Veliger. 15:6974.Google Scholar
Carriker, M. R. and Yochelson, E. L. 1968. Recent gastropod boreholes and Ordovician cylindrical borings. U.S. Geol. Surv. Prof. Pap. 593B:B1B23.Google Scholar
Carter, R. M. 1968. On the biology and palaeontology of some predators of bivalved Mollusca. Paleogeogr., Paleoclimatol., Paleoecol. 4:2965.CrossRefGoogle Scholar
Cifelli, R. 1976. Evolution of ocean climate and the record of planktonic Foraminifera. Nature. 264:431432.CrossRefGoogle Scholar
Copper, P. 1974. Structure and development of Early Paleozoic reefs. Second Int. Coral Reef Symp. 1:365386.Google Scholar
Cracraft, J. 1973. Continental drift, paleoclimatology, and the evolution and biogeography of birds. J. Zool. London. 169:455545.CrossRefGoogle Scholar
Crosse, H. and Fischer, P. 1882. Note complémentaire sur la resorption des parois internes du teste chèz Olivella. J. Conchyliol. 30:181183.Google Scholar
Currey, J. D. and Taylor, J. D. 1974. The mechanical behaviour of some molluscan hard tissues. J. Zool. London. 173:395406.CrossRefGoogle Scholar
Dayton, P. K. 1975. Experimental evaluation of ecological dominance in a rocky intertidal algal community. Ecol. Monogr. 45:137159.CrossRefGoogle Scholar
Earle, S. A. 1972. The influence of herbivores on the marine plants of Great Lameshur Bay, with an annotated list of plants. Nat. Hist. Mus. Los Angeles County Sci. Bull. 14:1744.Google Scholar
Ehrlich, P. R. and Raven, P. H. 1964. Butterterflies and plants: a study in coevolution. Evolution. 18:586608.CrossRefGoogle Scholar
Eichler, R. and Ristedt, H. 1966. Untersuchungen zur Fruhontogenie von Nautilus pompilius (Linné). Palaontol. Z. 40:173191.CrossRefGoogle Scholar
Fischer, A. G. and Arthur, M. A. 1977. Secular variation in pelagic realms. In: Enos, P. and Cook, H., eds., Soc. Econ. Petr. Mineral. Special Publ. 25: In press.Google Scholar
Fischer, P. 1881. Note sur le genre Olivella. J. Conchyliol. 29:3135.Google Scholar
Garrett, P. 1970. Phanerozoic stromatolites: noncompetitive ecological restriction by grazing and burrowing animals. Science. 169:171173.Google Scholar
George, R. W. and Main, A. R. 1968. The evolution of spiny lobsters (Palinuridae): a study of evolution in the marine environment. Evolution. 22:803820.Google Scholar
Glaessner, M. F. 1969. Decapoda. pp. R399R533. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology. Part R, Arthropoda 4 (2). Univ. Kansas Press; Lawrence, Kansas.Google Scholar
Golikov, A. M. and Starobogatov, Y. I. 1975. Systematics of prosobranch gastropods. Malacologia. 15:105232.Google Scholar
Hiatt, R. W. and Strassburg, D. W. 1960. Ecological relationships of the fish fauna on coral reefs of the Marshall Islands. Ecol. Monogr. 30:65127.CrossRefGoogle Scholar
Hobson, E. S. 1974. Feeding relationships of teleostean fishes on coral reefs in Kona, Hawaii. Fish. Bull. 72:9151031.Google Scholar
Holthuis, L. B. and Manning, R. B. 1969. Stomatopoda. Pp. R535R552. In: Moore, R. C., ed. Treatise on Invertebrate Paleontology. Part R, Arthropoda 4 (2). Univ. Kansas Press; Lawrence, Kansas.Google Scholar
von Huene, F. R. 1956. Paläontologie und Phylogenie der niederen Tetrapoden. 716 pp. Gustav Fischer; Jena, Deutschland.Google Scholar
Jackson, J. B. C., Goreau, T. F., and Hartman, W. D. 1971. Recent brachiopod-coralline sponge communities and their paleoecological significance. Science. 173:623625.Google Scholar
Jeletzky, J. A. 1965. Taxonomy and phylogeny of fossil Coleoidea (= dibranchiata). Geol. Surv. Pap. Can. 65-2:7276.Google Scholar
Kauffman, E. G. 1972. Ptychodus predation upon a Cretaceous Inoceramus. Palaeontology. 15:439444.Google Scholar
Kauffman, E. G. and Kesling, R. V. 1960. An Upper Cretaceous ammonite bitten by a mososaur. Contrib. Mus. Paleontol. Univ. Mich. 15:193248.Google Scholar
Kauffman, E. G. and Sohl, N. F. 1974. Structure and evolution of Antillean Cretaceous rudist frameworks. Verhandl. Naturf. Ges. Basel. 84:399467.Google Scholar
Kier, P. M. 1974. Evolutionary trends and their functional significance in the post-Paleozoic echinoids. J. Paleontol., Paleontol. Soc. Mem. 5, 48, Part II of II:195.Google Scholar
Lipps, J. H. and Mitchell, E. 1976. Trophic model for the adaptive radiations and extinctions of pelagic marine mammals. Paleobiology 2:147155.Google Scholar
McLean, R. B. and Mariscal, R. N. 1973. Protection of a hermit crab by its symbiotic sea anemone Calliactis tricolor. Experientia. 29:128130.CrossRefGoogle Scholar
Meyer, D. L. and McCurda, B. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology. 3:7482.Google Scholar
Miller, B. A. 1975. The biology of Terebra gouldi Deshayes, 1859, and a discussion of life history similarities among other terebrids of similar proboscis type. Pacific Sci. 29:227241.Google Scholar
Morse, D. H. 1975. Ecological aspects of adaptive radiation in birds. Biol. Rev. 50:167214.CrossRefGoogle Scholar
Morton, J. E. 1955. The evolution of the Ellobiidae with a discussion on the origin of the Pulmonata. Proc. Zool. Soc. London. 125:127168.CrossRefGoogle Scholar
Müller, J. 1970. Palynological evidence of early differentiation of angiosperms. Biol. Rev. 45:417450.CrossRefGoogle Scholar
Newell, N. D. 1957. Paleoecology of Permian reefs in the Guadalupe Mountains area. Geol. Soc. Am. Mem. 67:407436.Google Scholar
Newell, N. D. 1971. An outline history of tropical organic reefs. Am. Mus. Novit. 2465:137.Google Scholar
Portmann, A. 1967. Animal forms and patterns: a study of the appearance of animals. 254 pp. Schocken Books, New York.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science. 177:10651071.CrossRefGoogle ScholarPubMed
Rex, M. A. and Boss, K. J. 1976. Open coiling in Recent gastropods. Malacologia. 15:289297.Google Scholar
Rhoads, D. C. 1970. Mass properties, stability, and ecology of marine muds related to burrowing activity. In: Grimes, T. P. and Harper, J. C., eds. Trace Fossils. Geol. J. Special Issue. 3:391406.Google Scholar
Rhoads, D. C. and Morse, J. W. 1971. Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia. 4:413428.Google Scholar
Riegraf, W. 1973. Biszspuren auf Jurassischen Belemniten-rostren. N. Jb. Geol. Palaontol. M.H. 8:494500.Google Scholar
Rohr, D. M. 1976. Silurian predator borings in the brachiopod Dicaelosia from the Canadian Arctic. J. Paleontol. 50:11751179.Google Scholar
Romer, A. S. 1966. Vertebrate Paleontology. 468 pp. Univ. Chicago Press; Chicago, Ill.Google Scholar
Rossi, A. C. and Parisi, V. 1973. Experimental studies of predation by the crab Eriphia verrucosa on both snail and hermit crab occupants of conspecific gastropod shells. Boll. Zool. 40:117135.Google Scholar
Runnegar, B. and Pojeta, J. P. Jr. 1974. Molluscan phylogeny: the paleontological viewpoint. Science. 186:311317.CrossRefGoogle ScholarPubMed
Sammarco, P. W., Levington, J. S., and Ogden, J. C. 1974. Grazing and control of coral reef community structure by Diadema antillarum Philippi (Echinodermata: Echinoidea): a preliminary study. J. Mar. Res. 32:4753.Google Scholar
Schaeffer, B. and Rosen, D. E. 1961. Major adaptive levels in the evolution of the actinopterygian feeding mechanism. Am. Zool. 1:187204.Google Scholar
Sohl, N. F. 1964. Neogastropoda, Opisthobranchia and Basommatophora from the Ripley, Owl Creek, and Prairie Bluff Formations. U.S. Geol. Surv. Prof. Pap. 331-B:153B344B.Google Scholar
Sohl, N. F. 1969. The fossil record of shell boring by snails. Am. Zool. 9:725734.CrossRefGoogle Scholar
Speden, I. G. 1971. Notes on New Zealand fossil Mollusca—2. Predation on New Zealand Cretaceous species of Inoceramus. N.Z. J. Geol. Geophys. 14:5670.Google Scholar
Stanley, S. M. 1968. Post-Paleozoic adaptive radiation of infaunal bivalve molluscs—a consequence of mantle fusion and siphon formation. J. Paleontol. 42:214229.Google Scholar
Stanley, S. M. 1972. Functional morphology and evolution of byssally attached bivalve molluscs. J. Paleontol. 46:165212.Google Scholar
Stanley, S. M. 1973. An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proc. Nat. Acad. Sci. U.S.A. 70:14861489.Google Scholar
Stanley, S. M. 1975. A theory of evolution above the species level. Proc. Nat. Acad. Sci. U.S.A. 72:646650.Google Scholar
Stanley, S. M. 1976a. Fossil data and the Precambrian-Cambrian evolutionary transition. Am. J. Sci. 276:5676.Google Scholar
Stanley, S. M. 1976b. Ideas on the timing of metazoan diversification. Paleobiology. 2:209219.Google Scholar
Stanley, S. M. 1977. Trends, rates, and patterns of evolution in the Bivalvia. In: Hallam, A., ed. Patterns of Evolution. Elsevier; Amsterdam. In press.Google Scholar
Stein, R. A., Kitchell, J. F., and Knezevic, B. 1975. Selective predation by carp (Cyprinus carpio L.) on benthic molluscs in Skadar Lake, Yugoslavia. J. Fish. Biol. 7:391399.CrossRefGoogle Scholar
Stevčić, Z. 1971. The main features of brachyuran evolution. Syst. Zool. 20:331340.Google Scholar
Stephenson, W. and Searles, R. B. 1960. Experimental studies on the ecology of intertidal environments at Heron Island. I. Exclusion of fish from beach rock. Aust. J. Mar. Fresh-Water Res. 11:241267.Google Scholar
Taylor, D. W. and Sohl, N. F. 1962. An outline of gastropod classification. Malacologia. 1:732.Google Scholar
Taylor, J. D. 1973. The structural evolution of the bivalve shell. Palaeontology. 16:519534.Google Scholar
Thompson, T. E. 1960. Defensive adaptations in opisthobranchs. J. Mar. Biol. Assoc. U.K. 39:123134.CrossRefGoogle Scholar
Thompson, T. E. 1969. Acid secretion in Pacific Ocean gastropods. Aust. J. Zool. 17:755764.Google Scholar
Thomson, K. S. 1969. The biology of the lobe-finned fishes. Biol. Rev. 44:91154.CrossRefGoogle ScholarPubMed
Thurmond, J. T. 1974. Lower vertebrate faunas of the Trinity division in north-central Texas. Geoscience and Man. 8:103129.Google Scholar
Towe, K. N. 1970. Oxygen-collagen priority and the early metazoan fossil record. Proc. Nat. Acad. Sci. U.S.A. 65:781788.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology. 12:684709.Google Scholar
Valentine, J. W. 1973. Evolutionary paleoecology of the Marine Biosphere. 511 pp. Prentice Hall Inc.; Englewood Cliffs, New Jersey.Google Scholar
Valentine, J. W. and Moores, E. M. 1970. Plate-tectonic regulation of faunal diversity and sea level: a model. Nature. 228:657659.Google Scholar
Vermeij, G. J. 1971. The geometry of shell sculpture. Forma et Functio. 4:319325.Google Scholar
Vermeij, G. J. 1973. Adaptation, versatility, and evolution. Syst. Zool. 22:466477.Google Scholar
Vermeij, G. J. 1974. Marine faunal dominance and molluscan shell form. Evolution. 28:656664.CrossRefGoogle ScholarPubMed
Vermeij, G. J. 1975. Evolution and distribution of left-handed and planispiral coiling in snails. Nature. 254:419420.Google Scholar
Vermeij, G. J. 1976. Interoceanic differences in vulnerability of shelled prey to crab predation. Nature. 260:135136.Google Scholar
Vermeij, G. J. 1977. Patterns in crab claw size: the geography of crushing. Syst. Zool. 26: In press.CrossRefGoogle Scholar
Waller, T. R. 1972. The functional significance of some shell microstructures in the Pectinacea (Mollusca: Bivalvia). Pp. 4856. Int. Geol. Congr. 24th Session, Montreal, Can. Sect. 7, Paleontol.Google Scholar
Wänberg-Eriksson, K. 1964. Isospira reticulata n.sp. from the Upper Ordovician Boda Limestone, Sweden. Geol. Forenings I Stockholm Förhandl. 86:229237.Google Scholar
Westermann, G. E. G. 1971. Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. Life Sci. Contrib. R. Ontario Mus. 78:139.Google Scholar
Woodward, B. B. 1892. On the mode of growth and the structure of the shell in Velates conoideus, Lamk., and other Neritidae. Proc. Zool. Soc. London. 528540.Google Scholar
Yochelson, E. L. 1971. A new Late Devonian gastropod and its bearing on problems of open coiling and septation. Smithson. Contrib. Paleobiol. 3:231241.Google Scholar