Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T14:11:11.467Z Has data issue: false hasContentIssue false

Intraspecific variability through ontogeny in early ammonoids

Published online by Cambridge University Press:  08 April 2016

Kenneth De Baets
Affiliation:
Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland. E-mail: kenneth.debaets@pim.uzh.ch, chklug@pim.uzh.ch
Christian Klug
Affiliation:
Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zürich, Switzerland. E-mail: kenneth.debaets@pim.uzh.ch, chklug@pim.uzh.ch
Claude Monnet
Affiliation:
Université de Lille 1, CNRS UMR 8217 Géosystèmes, UFR des Sciences de la Terre, Bâtiment SN5, Avenue Paul Langevin, 59655 Villeneuve D'Ascq cedex, France. E-mail: claude.monnet@univ-lille1.fr

Abstract

Mollusks in general and ammonoids in particular are known to display a sometimes profound morphological intraspecific variability of their shell. Although this phenomenon is of greatest importance, it has rarely been investigated and quantified. It is especially crucial for taxonomy and incidentally for biodiversity analyses to account for it, because otherwise, the number of described species might exceed that of actual species within any group. Early ammonoids (Early Devonian, Paleozoic) typically suffer from this bias. For instance, most specimens from the same layer and the same region (e.g., the Erbenoceras beds of the Moroccan eastern Anti-Atlas studied here) differ morphologically from each other. Depending on the importance given to certain morphological characters, therefore, one could create a new species for almost every specimen. In this study, we measured nearly 100 such specimens from a restricted stratigraphic interval and quantified their intraspecific variability. There is a variable but strong overlap of the quantified shell characters at most ontogenetic stages, and only two species are here separated rather than the four previously recognized in Morocco. When ontogenetic trajectories of the Moroccan specimens are compared with coeval faunas from other regions (assigned to other species), a strong overlap between the morphospaces occupied by these taxa becomes apparent. The justification of some of these latter species is thus questionable even if their mean values in some conch parameters differ considerably from the mean values of the Moroccan species. Hence, the number of currently valid species of these loosely coiled early ammonoids is probably much too high. Extreme caution must therefore be taken when examining the diversity of groups in which the intraspecific variability is poorly known.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, D. C., and Collyer, M. L. 2009. A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution 63:11431154.CrossRefGoogle ScholarPubMed
Aguirre Urreta, M. B., and Riccardi, A. C. 1988. Albian heteromorph ammonoids from southern Patagonia, Argentina. Journal of Paleontology 62:598614.Google Scholar
Barrande, J. 1865-1877. Systême Silurien du centre de la Bohême, I, Vol. II. Céphalopodes. Prague/Paris.Google Scholar
Becker, R. T., and House, M. R. 1994. International Devonian goniatite zonation, Emsian to Givetian, with new records from Morocco. Courier Forschungsinstitut Senckenberg 169:79135.Google Scholar
Bogoslovsky, B. I. 1962. Systematic section, Devonian Ammonoidea. Pp. 334–347 in V. E. Ruzhencev. Superorder Ammonoidea. Pp. 243424inOrlov, Y. A., ed. Fundamentals of paleontology, Vol. 5. Mollusca-Cephalopoda 1. Akademiya Nauk SSSR, Moscow. [In Russian.]Google Scholar
Bogoslovsky, B. I. 1969. Devonian Ammonoidea. I. Agoniatitida. Proceedings of the Palaeontological Institute of the Russian Academy of Sciences 124:1341. [In Russian.]Google Scholar
Brayard, A., Bucher, H., Escarguel, G., Fluteau, F., Bourquin, S., and Galfetti, T. 2006. The Early Triassic ammonoid recovery: paleoclimatic significance of diversity gradients. Palaeogeography, Palaeoclimatology, Palaeoecology 239:374395.Google Scholar
Brayard, A., Escarguel, G., Bucher, H., Monnet, C., Brühwiler, T., Goudemand, N., Galfetti, T., and Guex, J. 2009. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325:11181121.Google Scholar
Bucher, H., Landman, N. H., Klofak, S. M., and Guex, J. 1996. Mode and rate of growth in ammonoids. Pp. 407461in Landman et al. 1996.Google Scholar
Callomon, J. H. 1963. Sexual dimorphism in Jurassic ammonites. Transactions of the Leicester Literary and Philosophical Society 57:2156.Google Scholar
Checa, A., Company, M., Sandoval, J., and Weitschat, W. 1996. Covariation of morphological characters in the Triassic ammonoid Czekanowskites rieberi. Lethaia 29:225235.Google Scholar
Chlupáč, I., and Turek, V. 1983. Devonian goniatites from the Barrandian area. Czechoslovakia. Rozpravy Ustředního Ústavu Geologického 46:1159.Google Scholar
Collyer, M. L., and Adams, D. C. 2007. Analysis of two-state multivariate phenotypic change in ecological studies. Ecology 88:683692.Google Scholar
Dagys, A., and Weitschat, W. 1993. Extensive intraspecific variation in a Triassic ammonoid from Siberia. Lethaia 26:113121.Google Scholar
Dagys, A. S., Bucher, H., and Weitschat, W. 1999. Intraspecific variation of Parasibirites kolymensis (Ammonoidea) from the Lower Triassic (Spathian) of Arctic Asia. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 83:163178.Google Scholar
Darwin, C., and Wallace, A. R. 1958. Evolution by natural selection: a centenary commemorative volume. Cambridge University Press, Cambridge.Google Scholar
Davis, R. A., Landman, N. H., Dommergues, J. L., Marchand, D., and Bucher, H. 1996. Mature modifications and dimorphism in ammonoid cephalopods. Pp. 463539in Landman et al. 1996.CrossRefGoogle Scholar
De Baets, K., Klug, C., and Korn, D. 2009. Anetoceratinae (Ammonoidea, Early Devonian) from the Eifel and Harz Mountains (Germany) with a revision of their genera. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 252:361376.Google Scholar
De Baets, K., Klug, C., and Plusquellec, Y. 2010. Zlíchovian faunas with early ammonoids from Morocco and their use for correlation of the eastern Anti-Atlas and the western Dra Valley. Bulletin of Geosciences 85:317352.Google Scholar
De Baets, K., Klug, C., Korn, D., Bartels, C., and Poschmann, M.In press. Early Emsian Ammonoidea and the age of the Hunsrück Slate (Rhenish Mountains, Western Germany). Palaeontographica A.Google Scholar
De Baets, K., Klug, C., Korn, D., and Landman, N. 2012. Early evolutionary trends in ammonoid embryonic development. Evolution 66:17881806.Google Scholar
Delanoy, G., Ropolo, P., Magnin, A., Autran, G., Poupon, A., and Gonnet, R. 1995. Sur le dimorphisme chez les Ancyloceratina (Ammonoidea) de Crétacé inférieur. Comptes Rendus de l'Académie des Sciences de Paris, série 2a, 321:537543.Google Scholar
Dera, G., Neige, P., Dommergues, J.-L., and Brayard, A. 2011. Ammonite paleobiogeography during the Pliensbachian-Toarcian crisis (Early Jurassic) reflecting paleoclimate, eustasy, and extinctions. Global and Planetary Change 78:92105.CrossRefGoogle Scholar
Dietl, G. 1978. Die heteromorphen Ammoniten des Dogger. Stuttgarter Beiträge zur Naturkunde B 33:132.Google Scholar
Dommergues, J.-L., Montuire, S., and Neige, P. 2002. Size patterns through time: the case of the Early Jurassic ammonite radiation. Paleobiology 28:423434.Google Scholar
Dzik, J. 1985. Typologic versus population concepts of chronospecies; implications for ammonite biostratigraphy. Acta Palaeontologica Polonica 30:7192.Google Scholar
Erben, H. K. 1960. Primitive Ammonoidea aus dem Unterdevon Frankreichs und Deutschlands. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 110:1128.Google Scholar
Erben, H. K. 1962. Über böhmische und türkische Vertreter von Anetoceras (Ammon., Unterdevon). Paläontologische Zeitschrift 36:1427.Google Scholar
Foote, M., and Miller, A. I. 2007. Principles of paleontology. W.H. Freeman, San Francisco.Google Scholar
Guex, J., Koch, A., O'Dogherty, L., and Bucher, H. 2003. A morphogenetic explanation of Buckman's law of covariation. Bulletin de la Société Géologique de France 174:603606.Google Scholar
Hallgrímsson, B., and Hall, B. K. 2005. Variation: a central concept in biology. Elsevier, Amsterdam.Google Scholar
Hammer, Ø., and Bucher, H. 2005. Buckman's first law of covariation—a case of proportionality. Lethaia 38:6772.Google Scholar
Hohenegger, J., and Tatzreiter, F. 1992. Morphometric methods in determination of ammonite species, exemplified through Balatonites shells (Middle Triassic). Journal of Paleontology 66:801816.Google Scholar
Hollard, H. 1963. Présence d'Anetoceras advolvens Erben (Ammonoidée primitive) dans le Dévonien inférieur du Maroc présaharien. Notes du Service Géologique du Maroc 23:131139.Google Scholar
Hughes, N. C., and Labandeira, C. C. 1995. The stability of species in taxonomy. Paleobiology 21:401403.Google Scholar
Hunt, G. 2004a. Phenotypic variation in fossil samples: modeling the consequences of time-averaging. Paleobiology 30:426443.Google Scholar
Hunt, G. 2004b. Phenotypic variance inflation in fossil samples: an empirical assessment. Paleobiology 30:487506.Google Scholar
Hunt, G. 2007. Variation and early evolution. Science 317:459460.CrossRefGoogle ScholarPubMed
Jacobs, D. K., Landman, N. H., and Chamberlain, J. A. 1994. Ammonite shell shape covaries with facies and hydrodynamics: iterative evolution as a response to changes in basinal environment. Geology 22:905908.2.3.CO;2>CrossRefGoogle Scholar
Kakabadze, M. V. 2004. Intraspecific and intrageneric variabilities and their implication for the systematics of Cretaceous heteromorph ammonites; a review. Scripta Geologica 128:1737.Google Scholar
Kampstra, P. 2008. Beanplot: a boxplot alternative for visual comparison of distributions. Journal of Statistical Software 28, code snippet 1.Google Scholar
Kaplan, P. 1999. Buckman's rule of covariation and other trends in Paleozoic Ammonoidea; morphological integration as key innovation. Geological Society of America Abstracts with Programs 31:172.Google Scholar
Kennedy, W. J., and Cobban, W. A. 1976. Aspects of ammonite biology, biogeography, and biostratigraphy. Special Papers in Palaeontology 17:194.Google Scholar
Klug, C. 2001. Early Emsian ammonoids from the eastern Anti-Atlas (Morocco). Paläontologische Zeitschrift 74:479515.Google Scholar
Klug, C., and Korn, D. 2004. The origin of ammonoid locomotion. Acta Palaeontologica Polonica 49:235242.Google Scholar
Klug, C., Kröger, B., Korn, D., Rücklin, M., Schemm-Gregory, M., De Baets, K., and Mapes, R. H. 2008. Ecological change during the early Emsian (Devonian) in the Tafilalt (Morocco), the origin of the Ammonoidea, and the first African pyrgocystid edrioasteroids, machaerids and phyllocarids. Palaeontographica A 283:83176.Google Scholar
Korn, D., and Klug, C. 2002. Ammoneae Devonicae. Pp. 1375inRiegraf, W., ed. Fossilium catalogus I: Animalia, Issue 138. Backhuys, Leiden.Google Scholar
Korn, D., 2003. Morphological pathways in the evolution of Early and Middle Devonian ammonoids. Paleobiology 29:329348.Google Scholar
Korn, D., 2007. Conch form analysis, variability, morphological disparity, and mode of life of the Frasnian (Late Devonian) ammonoid Manticoceras from Coumiac (Montagne Noire, France). Pp. 5785inLandman, N. H., Davis, R. A., and Mapes, R. H., eds. Cephalopods present and past: new insights and fresh perspectives. Springer, Dordrecht.Google Scholar
Korn, D., 2010. A key for the description of Palaeozoic ammonoids. Fossil Record 13:512.Google Scholar
Kraft, S., Korn, D., and Klug, C. 2008. Ontogenetic patterns of septal spacing in Carboniferous ammonoids. Neues Jahrbuch für Geologie und Mineralogie, Abhandlungen 250:3144.Google Scholar
Kröger, B., and Mapes, R. H. 2007. On the origin of bactritoids (Cephalopoda). Paläontologische Zeitschrift 81:316327.Google Scholar
Kutscher, F. 1933. Fossilien aus dem Hunsrückschiefer I. Jahrbuch der Preussischen Geologischen Landesanstalt 54:628641.Google Scholar
Labandeira, C. C., and Hughes, N. C., 1994. Biometry of the Late Cambrian trilobite genus Dikelocephalus and its implications for trilobite systematics. Journal of Paleontology 68:92517.Google Scholar
Landman, N. H., Tanabe, K., and Davis, R. A. 1996. Ammonoid paleobiology (Topics in Geobiology 13). Plenum, New York.CrossRefGoogle Scholar
Lécuyer, C., and Bucher, H. 2006. Stable isotope compositions of a late Jurassic ammonite shell: a record of seasonal surface water temperatures in the southern hemisphere? eEarth 1:17.Google Scholar
Makowski, H. 1962. Problem of sexual dimorphism in ammonites. Palaeontologia Polonica 12:192.Google Scholar
Mayr, E. 1963. Animal species and evolution. Belknap Press of Harvard University Press, Cambridge.Google Scholar
Monnet, C., and Bucher, H. 2005. New Middle and Late Anisian (Middle Triassic) ammonoid faunas from northwestern Nevada (USA): taxonomy and biochronology. Fossils and Strata 52:1121.CrossRefGoogle Scholar
Monnet, C., Bucher, H., Wasmer, W., and Guex, J. 2010. Revision of the genus Acrochordiceras Hyatt, 1877 (Ammonoidea, Middle Triassic): morphology, biometry, biostratigraphy and intra-specific variability. Palaeontology 53:961996.Google Scholar
Monnet, C., De Baets, K., and Klug, C. 2011. Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods. BMC Evolutionary Biology 11:115.CrossRefGoogle ScholarPubMed
Monnet, C., Bucher, H., Guex, J., and Wasmer, W. 2012. Large-scale evolutionary trends of Acrochordiceratidae Arthaber, 1911 (Ammonoidea, Middle Triassic) and Cope's rule. Palaeontology 55:87107.CrossRefGoogle Scholar
Montesinos, J. R., and Truyols-Massoni, M. 1987. La Fauna de Anetoceras y el límite Zlichoviense-Dalejense en el Dominio Palentino (NO. de España). Cuaderno Laboratorio Xeolóxico de Laxe 11:191208.Google Scholar
Morard, A., and Guex, J. 2003. Ontogeny and covariation in the Toarcian genus Osperlioceras (Ammonoidea). Bulletin de la Société Géologique de France 174:607615.Google Scholar
Nardin, E., Rouget, I., and Neige, P. 2005. Tendencies in paleontological practice when defining species, and consequences on biodiversity studies. Geology 33:969972.Google Scholar
Olóriz, F., Palmqvist, P., and Pérez-Claros, A. 1997. Shell features, main colonized environments, and fractal analysis of sutures in Late Jurassic ammonites. Lethaia 30:191204.Google Scholar
Olóriz, F., 1999. Recent advances in morphometric approaches to covariation of shell features and the complexity of suture lines in Late Jurassic ammonites, with reference to the major environments colonized. Pp. 273293inOlóriz, F. and Rodríguez-Tovar, F. J., eds. Advancing research on living and fossil cephalopods. Kluwer/Plenum, New York.Google Scholar
Palframan, D. F. B. 1966. Variation and ontogeny of some Oxfordian ammonites: Taramelliceras richei (De Loriol) and Creniceras renggeri (Oppel), from England. Palaeontology 9:290311.Google Scholar
Palframan, D. F. B. 1967. Variation and ontogeny of some Oxford clay ammonites: Distichoceras bicostatum (Stahl) and Horioceras bauggieri (d'Orbigny), from England. Palaeontology 10:6094.Google Scholar
Parent, H. 1997. Ontogeny and sexual dimorphism of Eurycephalites gottschei (Tornquist) (Ammonoidea) of the Andean Lower Callovian (Argentine-Chile). Géobios 30:407419.Google Scholar
Raup, D. M., and Michelson, A. 1965. Theoretical morphology of the coiled shell. Science 147:12941295.Google Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.Google Scholar
Reeside, J. B., and Cobban, W. A. 1960. Studies of the Mowry Shale (Cretaceous) and contemporary formations in the United States and Canada. U.S. Geological Survey Professional Paper 355:1126.Google Scholar
Ropolo, P. 1995. Implications of variation in coiling in some Hauterivian (Lower Cretaceous) heteromorph ammonites from the Vocontian basin, France. Memorie Descritive della Carta Geologica d'Italia 51:137165.Google Scholar
Ruan, Y.-P. 1981. Devonian and earliest Carboniferous ammonoids from Guangxi and Guizhou. Memoirs of the Nanjing Institute of Geology and Paleontology 15:1152. [In Chinese.]Google Scholar
Ruan, Y.-P. 1996. Zonation and distribution of the Early Devonian primitive ammonoids in South China. Pp. 104112inWang, H.-Z. and Wang, X.-L., eds. Centennial memorial volume of Prof. Sun Yunzhu: palaeontology and stratigraphy. China University of Geosciences Press, Wuhan.Google Scholar
Ruan, Y.-P., and He, G. 1974. Devonian ammonoids. Pp. 238239inNanjing Institute of Geology and Paleontology, eds.A handbook of the stratigraphy and paleontology of Southwest China. Academia Sinica, Nanjing.Google Scholar
Salgado-Ugarte, I. H., Shimizu, M., Taniuchi, T., and Matsushita, K. 2000. Size Frequency Analysis by averaged shifted histograms and kernel density estimators. Asian Fisheries Science 13:112.CrossRefGoogle Scholar
Sanvicente-Añorve, L., Salgado-Ugarte, I., and Castillo-Rivera, M. 2003. The use of kernel density estimators to analyse length-frequency distributions of fish larvae. Pp. 419430inBrowman, H. I. and Skiftesvik, A. B., eds. The big fish bang. Proceedings of the 26th annual larval fish conference. Institute of Marine Research, Bergen.Google Scholar
Sheather, S. J., and Jones, M. C. 1991. A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society B 53:683690.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1994. Biometry: the principles and practices of statistics in biological research. W.H. Freeman, New York.Google Scholar
Termier, G., and Termier, H. 1950. Paléontologie Marocaine. II. Invértébres de l'ère primaire. Fasciscule III. Mollusques. Notes et Mémoires du Service Carte Géologique du Maroc 78:1246.Google Scholar
Tsujino, Y., Naruse, H., and Maeda, H. 2003. Estimation of allometric shell growth by fragmentary specimens of Baculites tanakae Matsumoto and Obata (a Late Cretaceous heteromorph ammonoid). Paleontological Research 7:245255.Google Scholar
Urdy, S., Goudemand, N., Bucher, H., and Chirat, R. 2010a. Growth dependent phenotypic variation of molluscan shell shape: implications for allometric data interpretation. Journal of Experimental Zoology Part B 314:303326.Google Scholar
Urdy, S., 2010b. Allometries and the morphogenesis of the molluscan shell: a quantitative and theoretical model. Journal of Experimental Zoology B 314:280302.Google Scholar
Weitschat, W. 2008. Intraspecific variation of Svalbardiceras spitzbergensis (Frebold) from the Early Triassic (Spathian) of Spitsbergen. Polar Research 27:292297.CrossRefGoogle Scholar
Westermann, G. E. G. 1964. Sexual-Dimorphismus bei Ammonoideen und seine Bedeutung für Taxonomie der Otoitidae (einschliesslich Sphaeroceratinae; Ammonitina, M. Jura). Palaeontographica A 124:13, 33–73.Google Scholar
Westermann, G. E. G. 1966. Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 124:289312.Google Scholar
Wiedmann, J. 1969. The heteromorphs and ammonoid extinction. Biological Reviews 44:563602.Google Scholar
Yacobucci, M. 2004. Buckman's Paradox: variability and constraints on ammonoid ornament and shell shape. Lethaia 37:5769.Google Scholar
Yatskov, S. V. 1990. The oldest ammonoid family, the Anetoceratidae. Paleontological Journal 1990 (3):2532. [In Russian.]Google Scholar
Yu, C. M., and Ruan, Y.-P. 1988. Proposal and comment on the definition of the Emsian. Pp. 449468inMcMillan, N. J., Embry, A. F., and Glass, D. J., eds. Devonian of the world, Vol. 3. Paleontology, paleoecology and biostratigraphy. (Canadian Society of Petroleum Geologists Memoir 14). Canadian Society of Petroleum Geologists, Calgary.Google Scholar