Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-27T11:34:56.517Z Has data issue: false hasContentIssue false

How phylogenetic inference can shape our view of heterochrony: examples from thecideide brachiopods

Published online by Cambridge University Press:  08 February 2016

Glenn. S. Jaecks
Affiliation:
Department of Geology, University of California, Davis, California 95616. E-mail: jaecks@geology.ucdavis.edu
Sandra. J. Carlson
Affiliation:
Department of Geology, University of California, Davis, California 95616. E-mail: jaecks@geology.ucdavis.edu

Abstract

Heterochrony is considered to be an important and ubiquitous mechanism of evolutionary change. Three components are necessary to describe heterochrony: phylogenetic relationships, size and shape change, and timing of developmental events. Patterns and processes of heterochrony are all too often invoked before all three components have been investigated. Phylogenetic hypotheses affect the interpretation of heterochrony in three ways: rooting of a clade, topology of a clade, and character polarity. To study these effects we examined the distribution of shell microstructure, lophophore support structures, and body size in four different phylogenetic hypotheses of thecideide brachiopods (Triassic to Recent), a group of minute, cryptic, benthic marine invertebrates.

Thecideides are consistently monophyletic in experiments using terebratulide, strophomenate, and spire-bearing outgroups together and separately, varying ingroup membership, and experimentally withholding certain character complexes. Thecideide monophyly is also supported by bootstrap analysis. Hypotheses of heterochrony in thecideide origins and evolution are therefore not merely artifacts of classification and can be pursued further. Using either strophomenate or spire-bearing outgroups, Triassic Thecospira is the most primitive thecideide. Trees constructed using terebratulide outgroups are rooted instead at Eudesella, a taxon derived in every other phylogenetic reconstruction, and the Triassic thecideides occupy derived rather than primitive positions.

Our phylogenetic results support the traditional interpretation of the reduction or loss of the secondary fibrous shell layer as a paedomorphic pattern, whereas the evolution of lophophore support structures suggests a peramorphic pattern. Reduction in thecideide adult body size is gradual, phylogenetically, and results in an overall paedomorphic pattern. Heterochrony in these three character suites may play a role in the subsequent evolution of the clade, but apparently not in the origin of the clade, as is commonly thought. Heterotopy, rather than—or in addition to—heterochrony, may account for both the origin and evolution of the lophophore support structures and in the reduction and loss of the secondary shell layer. These phylogenetic hypotheses suggest that heterochrony can result from a complex mosaic of processes and provide specific, testable predictions about the processes responsible for producing the patterns, whether heterochronic or not. Categorizing an entire clade (such as thecideides), rather than individual characters, as globally paedomorphic may allow interesting peramorphic patterns in individual characters to be overlooked.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5:296317.CrossRefGoogle Scholar
Backhaus, E. 1959. Monographie der cretacischen Thecideidae (Brach.). Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg 28:590.Google Scholar
Baker, P. G. 1969. The ontogeny of the thecideacean brachiopod Moorellina granulosa (Moore) from the Middle Jurassic of England. Palaeontology 2:388399.Google Scholar
Baker, P. G. 1983. The diminutive thecideidine brachiopod Enallothecidea pygmaea (Moore) from the Middle Jurassic of England. Palaeontology 26:663669.Google Scholar
Baker, P. G. 1984. New evidence of a spiriferide ancestor for the Thecideidina (Brachiopoda). Palaeontology 27:857866.Google Scholar
Baker, P. G. 1990. The classification, origin and phylogeny of thecideidine brachiopods. Palaeontology 33:175191.Google Scholar
Baker, P. G. 1991. Morphology and shell microstructure of Cretaceous thecideidine brachiopods and their bearing on thecideidine phylogeny. Palaeontology 34:815836.Google Scholar
Baker, P. G.In press. Order Thecideida. In A. Williams et al. Brachiopoda 5. Part H (revised) of Kaesler, R. L., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Baker, P. G., and Elston, D. G. 1984. A new polyseptate thecideacean brachiopod from the Middle Jurassic of the Cotswolds, England. Palaeontology 27:777791.Google Scholar
Baker, P. G., and Laurie, K. 1978. Revision of Aptian thecideidine brachiopods of the Faringdon Sponge Gravels. Palaeontology 21:555570.Google Scholar
Baker, P. G., and Mancenido, M. O. 1997. The morphology and shell microstructure of the thecideidine brachiopod Ancorellina ageri from the Lower Jurassic of Argentina. Palaeontology 40:191200.Google Scholar
Baker, P. G., and Wilson, M. A. 1999. The first thecideide brachiopod from the Jurassic of North America. Palaeontology 42:887895.CrossRefGoogle Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data, geometry and biology. Cambridge University Press, Cambridge.Google Scholar
Boucot, A. J., and Wilson, R. A. 1994. Origin and early radiation of terebratuloid brachiopods: thoughts provoked by Prorensselaeria and Nanothyris. Journal of Paleontology 68:10021025.CrossRefGoogle Scholar
Brunton, C. H. C., Lazarev, S. S., and Grant, R. E. 1995. A review and new classification of the brachiopod order Productida. Palaeontology 38:915936.Google Scholar
Carter, J. L., Johnson, J. G., Gourvennec, R., and Hou, H. F. 1994. A revised classification of the spiriferid brachiopods. Annals of the Carnegie Museum 63:327374.CrossRefGoogle Scholar
Cohen, B. L., and Gawthrop, A. B. 1997. The brachiopod genome. Pp. H189H212in Williams, A. et al. Brachiopoda 1. Part H (revised) ofKaesler, R. L., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Cohen, B. L., Gawthrop, A. B., and Cavalier-Smith, T. 1998. Molecular phylogeny of brachiopods and phoronids based on nuclear-encoded small subunit ribosomal RNA gene sequences. Philosophical Transactions of the Royal Society of London B 353:20392061.CrossRefGoogle Scholar
Copper, P. 1996. Davidsonia and Rugodavidsonia (new genus), cryptic Devonian atrypid brachiopods from Europe and South China. Journal of Paleontology 70:588602.CrossRefGoogle Scholar
Cowen, R., and Rudwick, M. J. S. 1967. Bittnerula Hall and Clarke, and the evolution of cementation in the Brachiopoda. Geological Magazine 104:155159.CrossRefGoogle Scholar
de Queiroz, K. 1996. Including the characters of interest during tree reconstruction and the problems of circularity and bias in studies of character evolution. American Naturalist 148:700708.CrossRefGoogle Scholar
Elliott, G. F. 1948. Palingenesis in Thecidea (Brachiopoda). Annals and Magazine of Natural History 1:130.CrossRefGoogle Scholar
Elliott, G. F. 1953. The classification of the thecidean brachiopods. Annals and Magazine of Natural History 6:693701.CrossRefGoogle Scholar
Elliott, G. F. 1958. Classification of thecidean brachiopods. Journal of Paleontology 32:373.Google Scholar
Elliott, G. F. 1965. Suborder Thecideidina. Pp. H857H862in A. Williams et al. Brachiopoda 2. Part H ofMoore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America, New York, and University of Kansas, Lawrence.Google Scholar
Fink, W. L. 1982. The conceptual relationship between ontogeny and phylogeny. Paleobiology 8:254264.CrossRefGoogle Scholar
Foote, M. 1996. On the probability of ancestors in the fossil record. Paleobiology 22:141151.CrossRefGoogle Scholar
Geary, D. H. 1990. Patterns of evolutionary tempo and mode in the radiation of Melanopsis (Gastropoda; Melanopsidae). Paleobiology 16:492511.CrossRefGoogle Scholar
Gingerich, P. D. 1976. Paleontology and phylogeny: patterns of evolution at the species level in early Tertiary mammals. American Journal of Science 276:128.CrossRefGoogle Scholar
Godfrey, L. R., and Sutherland, M. R. 1995. Flawed inference: why size based tests of heterochronic processes do not work. Journal of Theoretical Biology 172:4361.CrossRefGoogle Scholar
Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews of the Cambridge Philosophical Society 41:587640.CrossRefGoogle ScholarPubMed
Gould, S. J. 1977. Ontogeny and phylogeny. Harvard University Press, Cambridge.Google Scholar
Grant, R. E. 1972. The lophophore and feeding mechanism of the Productidina (Brachiopoda). Journal of Paleontology 46:213248.Google Scholar
Jones, D. S. 1988. Sclerochronology and the size versus age problem. Pp. 93110in McKinney, M. L., ed. Heterochrony in evolution a multidisciplinary approach, Vol. 7. Topics in Geobiology. Plenum, New York.CrossRefGoogle Scholar
Jones, D. S., and Gould, S. J. 1999. Direct measurement of age in fossil Gryphaea: the solution to a classic problem in heterochrony. Paleobiology 25:158187.CrossRefGoogle Scholar
Kjaer, C. R., and Thompsen, E. 1999. Heterochrony in bourgueticrinid sea-lilies at the Cretaceous/Tertiary boundary. Paleobiology 25:2940.Google Scholar
Klingenberg, C. P. 1998. Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biological Reviews of the Cambridge Philosophical Society 73:79123.CrossRefGoogle ScholarPubMed
Landman, N. H. 1989. Iterative progenesis in Upper Cretaceous ammonites. Paleobiology 15:95117.CrossRefGoogle Scholar
Laurin, B., and Garcia-Joral, F. 1990. Miniaturization and heterochrony in Homoeorhynchia meridionalis and Homoeorhynchia cynocephala (Brachiopoda, Rhynchonellidae) from the Jurassic of the Iberian Range, Spain. Paleobiology 16:6276.CrossRefGoogle Scholar
Lyons-Weiler, J., Hoelzer, G. A., and Tausch, R. J. 1998. Optimal outgroup analysis. Biological Journal of the Linnean Society 64:493511.CrossRefGoogle Scholar
Maddison, W. P., Donoghue, M. J., and Maddison, D. R. 1984. Outgroup analysis and parsimony. Systematic Zoology 33:83103.CrossRefGoogle Scholar
McKinney, M. 1984. Allometry and heterochrony in an Eocene echinoid lineage: morphological change as a by-product of selection. Paleobiology 10:407419.CrossRefGoogle Scholar
McNamara, K. J. 1982. Heterochrony and phylogenetic trends. Paleobiology 8:130142.CrossRefGoogle Scholar
Nixon, K. C., and Carpenter, J. M. 1993. On outgroups. Cladistics 9:413426.CrossRefGoogle ScholarPubMed
O'Keefe, F. R., Rieppel, O., and Sander, M. P. 1999. Shape disassociation and inferred heterochrony in a clade of pachypleurosaurs (Reptilia, Sauropterygia). Paleobiology 25:504517.CrossRefGoogle Scholar
Pajaud, D. 1966. Problèmes relatifs à la détermination des espèces chez les Moorellininae (Thecideidae, Brachiopodes). Bulletin de la Société Géologique de France 7:630637.CrossRefGoogle Scholar
Pajaud, D. 1970. Monographie des Thecidees (Brachiopodes). Mémoires de la Société Geologique de France, nouvelle série, Tome xix. Paris.Google Scholar
Raff, R. A. 1996. The shape of life. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Reilly, S. M., Wiley, E. O., and Meinhardt, D. J. 1997. An integrative approach to heterochrony: the distinction between interspecific and intraspecific phenomena. Biological Journal of the Linnean Society 60:119143.CrossRefGoogle Scholar
Rudwick, M. J. S. 1960. The feeding mechanism of spire-bearing fossil brachiopods. Geological Magazine 97:369383.CrossRefGoogle Scholar
Rudwick, M. J. S. 1962. Filter-feeding mechanisms in some brachiopods from New Zealand. Journal of the Linnean Society 44:592615.Google Scholar
Rudwick, M. J. S. 1968. The feeding mechanisms and affinities of the Triassic brachiopods Thecospira Zugmayer and Bactrynium Emmrich. Palaeontology 11:329360.Google Scholar
Rudwick, M. J. S. 1970. Living and fossil brachiopods. Hutchinson University Library Press, London.Google Scholar
Schuchert, C. 1897. A synopsis of American fossil Brachiopoda including bibliography and synonymy. U.S. Geological Survey Bulletin No. 87.CrossRefGoogle Scholar
Smirnova, T. N. 1979. Shell microstructure in Early Cretaceous thecidean brachiopods. Paleontological Journal 13:339344.Google Scholar
Smith, A. B. 1994. Rooting molecular trees: problems and strategies. Biological Journal of the Linnean Society 51:279292.CrossRefGoogle Scholar
Swofford, D. L. 1998. PAUP. Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4. Sinauer, Sunderland, Mass.Google Scholar
Watrous, L. E., and Wheeler, Q. D. 1981. The out-group comparison method of character analysis. Systematic Zoology 30:111.CrossRefGoogle Scholar
Wei, K.-Y. 1994. Allometric heterochrony in the Pliocene–Pleistocene planktic foraminiferal clade Globoconella. Paleobiology 20:6684.CrossRefGoogle Scholar
Williams, A. 1955. Shell structure of the brachiopod Lacazella mediterraneum (Risso). Nature 175:11231124.CrossRefGoogle Scholar
Williams, A. 1956. The calcareous shell of the Brachiopoda and its importance to their classification. Biological Reviews of the Cambridge Philosophical Society 31:243287.CrossRefGoogle Scholar
Williams, A. 1973. The secretion and structural evolution of the shell of thecideidine brachiopods. Philosophical Transactions of the Royal Society of London B 264:439478.Google Scholar
Williams, A., Carlson, S. J., Brunton, C. H. C., Holmer, L. E., and Popov, L. 1996. A supra-ordinal classification of the Brachiopoda. Philosophical Transactions of the Royal Society of London B 351:11711193.Google Scholar
Williams, A., James, M. A., Emig, C. C., MacKay, S., and Rhodes, M. C. 1997. Anatomy. Pp. 7188in Williams, A. et al. Brachiopoda 1. Part H (revised) ofKaesler, R. L., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo., and University of Kansas, Lawrence.Google Scholar
Zelditch, M. L., and Fink, W. L. 1996. Heterochrony and heterotopy: stability and innovation in the evolution of form. Paleobiology 22:241254.CrossRefGoogle Scholar
Zumwalt, G. S. 1976. The functional morphology of the tropical brachiopod Thecidellina congregata Cooper 1954. . University of California, Davis.Google Scholar