Skip to main content Accessibility help
×
Home

Hierarchical controls on extinction selectivity across the diplobathrid crinoid phylogeny

  • Selina R. Cole (a1)

Abstract

Identifying correlates of extinction risk is important for understanding the underlying mechanisms driving differential rates of extinction and variability in the temporal durations of taxa. Increasingly, it is recognized that the effects of multiple, potentially interacting variables and phylogenetic relationships should be incorporated when studying extinction selectivity to account for covariation of traits and shared evolutionary history. Here, I explore a variety of biological and ecological controls on genus longevity in the global fossil record of diplobathrid crinoids by analyzing the combined effects of species richness, habitat preference, body size, filtration fan density, and food size selectivity. I employ a suite of taxic and phylogenetic approaches to (1) quantitatively compare and rank the relative effects of multiple factors on taxonomic longevity and (2) determine how phylogenetic comparative approaches alter interpretations of extinction selectivity.

I find controls on diplobathrid genus duration are hierarchically structured, where species richness is the primary predictor of duration, habitat is the secondary predictor, and combinations of ecological and biological traits are tertiary controls. Ecology plays an important but complex role in the generation of crinoid macroevolutionary patterns. Notably, tolerance of environmental heterogeneity promotes increased genus duration across diplobathrid crinoids, and the effects of traits related to feeding ecology vary depending on habitat lithology. Finally, I find accounting for phylogeny does not consistently decrease the significance of correlations between traits and genus duration, as is commonly expected. Instead, the strength of relationships between traits and duration may increase, decrease, or remain statistically similar, and both the magnitude and direction of these shifts are generally unpredictable. However, traits with strong correlations and/or moderately large effect sizes (Cohen's f2 > 0.15) under taxic approaches tend to remain qualitatively unchanged under phylogenetic approaches.

Copyright

Footnotes

Hide All

Data available from the Dryad Digital Repository:https://doi.org/10.5061/dryad.533j6c3

Footnotes

References

Hide All
Anderson, D.R. 2008. Model based inference in the life sciences: a primer on evidence. Springer Science and Business Media, New York.
Ausich, W. I. 1980. A model for niche differentiation in Lower Mississippian crinoid communities. Journal of Paleontology 54:273288.
Ausich, W. I., and Bottjer, D. J.. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173174.
Bapst, D. W. 2012. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods in Ecology and Evolution 3:803807.
Bapst, D. W. 2013. A stochastic rate-calibrated method for time-scaling phylogenies of fossil taxa. Methods in Ecology and Evolution 4:724733.
Bapst, D. W. 2014. Assessing the effect of time-scaling methods on phylogeny-based analyses in the fossil record. Paleobiology 40:331351.
Baumiller, T. K. 1992. Importance of hydrodynamic lift to crinoid autecology, or, could crinoids function as kites? Journal of Paleontology 66:658665.
Baumiller, T. K. 1993. Survivorship analysis of Paleozoic Crinoidea: effect of filter morphology on evolutionary rates. Paleobiology 19:304321.
Baumiller, T. K. 1997. Crinoid functional morphology. Paleontological Society Paper 3:4568.
Baumiller, T. K. 2008. Crinoid ecological morphology. Annual Review of Earth and Planetary Sciences 36:221249.
Blomberg, S. P., Garland, T. Jr., and Ives, A. R.. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717745.
Breimer, A. 1969. A contribution to paleoecology of Paleozoic stalked crinoids. Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen Series B: Physical Sciences 72:139150.
Brower, J. C. 2007. The application of filtration theory to food gathering in Ordovician crinoids. Journal of Paleontology 81:12843000.
Cardillo, M., Mace, G. M., Jones, K. E., Bielby, J., Bininda-Emonds, O. R. P., Sechrest, W., Orme, C. D. L., and Purvis, A.. 2005. Multiple causes of high extinction risk in large mammal species. Science 309:12391241.
Cohen, J. E. 1988. Statistical power analysis for the behavioral sciences, 2nd ed. Erlbaum, Hillsdale, N.J.
Cole, S. R. 2017. Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata). Journal of Paleontology 91:815828.
Cole, S. R. 2018. Phylogeny and evolutionary history of diplobathrid crinoids (Echinodermata). Palaeontology 62:357373.
Cole, S. R., Wright, D. F., and Ausich, W. I.. 2019. Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician). Palaeogeography, Palaeoclimatology, Palaeoecology 52:8298.
Colles, A., Liow, L. H., and Prinzing, A.. 2009. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecology Letters 12:849863.
Congreve, C. R., Falk, A. R., and Lamsdell, J. C.. 2018. Biological hierarchies and the nature of extinction. Biological Reviews 93:811826.
Cooper, N., Jetz, W., and Freckleton, R. P.. 2010. Phylogenetic comparative approaches for studying niche conservatism. Journal of Evolutionary Biology 23:25292539.
Cox, D. R., and Snell, E. J.. 1989. The analysis of binary data, 2nd ed. Chapman and Hall, New York.
Crampton, J. S., Cooper, R., Beu, A. G., Foote, M., and Marshall, B. A.. 2010. Biotic influences on species duration: interactions between traits in marine molluscs. Paleobiology 36:204223.
Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125:115.
Field, D. J., Bercovici, A., Berv, J. S., Dunn, R., Fastovsky, D. E., Lyson, T. R., Vajda, V., and Gauthier, J. A.. 2018. Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction. Current Biology 28:18251831.e2.
Foote, M., Crampton, J. S., Beu, A. G., and Cooper, R. A.. 2008. On the bidirectional relationship between geographic range and taxonomic duration. Paleobiology 34:421433.
Foote, M., Ritterbush, K. A., and Miller, A. I.. 2016. Geographic ranges of genera and their constituent species: structure, evolutionary dynamics, and extinction resistance. Paleobiology 42:269288.
Friedman, M. 2009. Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction. Proceedings of the National Academy of Sciences USA 106:52185223.
Fritz, S. A., and Purvis, A.. 2010. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conservation Biology 24:10421051.
Gaston, K. J., and Blackburn, T. M.. 1997. Birds, body size, and the threat of extinction. Philosophical Transactions of the Royal Society of London B 347: 205212.
Gili, C., and Martinell, J.. 1994. Relationship between species longevity and larval ecology in nassariid gastropods. Lethaia 27:291299.
Grafen, A. 1989. The phylogenetic regression. Philosophical Transactions of the Royal Society of London B 326:119157.
Green, W. A., Hunt, G., Wing, S. L., and DiMichele, W. A.. 2011. Does extinction wield an axe or pruning shears? How interactions between phylogeny and ecology affect patterns of extinction. Paleobiology 37:7291.
Hammer, Ø., Harper, D. A. T., and Ryan, D. P.. 2001. PAST: palaeontological statistics package for education and data analysis. Palaeontologica Electronica 4:19.
Hansen, T. A. 1978. Larval dispersal and species longevity in Lower Tertiary gastropods. Science 199:885887.
Hansen, T. A. 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology 6:193207.
Harmon, L. J. 2018. Phylogenetic comparative methods: learning from trees. Self published under a CC-BY-4.0 license. https://lukejharmon.github.io/pcm.
Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., and Challenger, W.. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129131.
Harnik, P. G. 2011. Direct and indirect effects of biological factors on extinction risk in fossil bivalves. Proceedings of the National Academy of Sciences USA 108:1359413599.
Harnik, P. G., Lotze, H. K., Anderson, S. C., Finkel, Z. V., Finnegan, S., Lindberg, D. R., Liow, L. H., Lockwood, R., McClain, C. R., McGuire, J. L., O'Dea, A., Pandolfi, J. M., Simpson, C., and Tittensor, D. P.. 2012. Extinctions in ancient and modern seas. Trends in Ecology and Evolution 27:608617.
Harnik, P. G., Fitzgerald, P. C., Payne, J. L., and Carlson, S. J.. 2014. Phylogenetic signal in extinction selectivity in Devonian terebratulide brachiopods. Paleobiology 40:675692.
Harvey, P. H., and Pagel, M. D.. 1991. The comparative method in evolutionary biology. Oxford University Press, Oxford.
Heim, N. A., and Peters, S. E.. 2011. Regional environmental breadth predicts geographic range and longevity in fossil marine genera. PLoS ONE 6:e18946.
Holterhoff, P. F. 1997. Filtration models, guilds, and biofacies: crinoid paleoecology of the Stanton Formation (Upper Pennsylvanian), midcontinent, North America. Palaeogeography, Palaeoclimatology, Palaeoecology 130:177208.
Hopkins, M. J. 2011. How species longevity, intraspecific morphological variation, and geographic range size are related: a comparison using late Cambrian trilobites. Evolution 65:32533273.
Humphries, J. M., Bookstein, F. L., Chernoff, B., Smith, G. R., Elder, R. L., and Poss, S. G.. 1981. Multivariate discrimination by shape in relation to size. Systematic Zoology 30:291308.
Hunt, G., and Carrano, M. T.. 2010. Models and methods for analyzing phenotypic evolution in lineages and clades. Paleontological Society Papers 16:245269.
Hunt, G., Roy, K., and Jablonski, D.. 2005. Species-level heritability reaffirmed: a comment on “on the heritability of geographic range sizes.” American Naturalist 166:129135.
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129134.
Jablonski, D. 1987. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238:360364.
Jablonski, D. 1991. Extinctions: a paleontological perspective. Science 253: 754757.
Jablonski, D. 1996. Body size and macroevolution. Pp. 256289 in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds., Evolutionary Paleobiology. University of Chicago Press, Chicago.
Jablonski, D. 2005. Mass extinctions and macroevolution. Paleobiology 31:192210.
Jablonski, D. 2008a. Extinction and the spatial dynamics of biodiversity. Proceedings of the National Academy of Sciences USA 105:1152811535.
Jablonski, D. 2008b. Species selection: theory and data. Annual Review of Ecology, Evolution, and Systematics 39:501524.
Jablonski, D., and Hunt, G.. 2006. Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organismic versus species-level explanations. American Naturalist 168:556564.
Jablonski, D., and Roy, K.. 2003. Geographical range and speciation in fossil and living molluscs. Proceedings of the Royal Society of London B 270:401406.
Kammer, T. W. 1985. Aerosol filtration theory applied to Mississippian deltaic crinoids. Journal of Paleontology 59:551560.
Kammer, T. W., and Ausich, W. I.. 1987. Aerosol suspension feeding and current velocities: distributional controls for late Osagean crinoids. Paleobiology 13:379395.
Kammer, T. W., and Ausich, W. I. 2006. The “Age of Crinoids”: a Mississippian biodiversity spike coincident with widespread carbonate ramps. Palaios 21:238248.
Kammer, T. W., Baumiller, T. K., and Ausich, W. I.. 1997. Species longevity as a function of niche breadth. Geology 25:219222.
Kammer, T. W., Baumiller, T. K., and Ausich, W. I.. 1998. Evolutionary significance of differential species longevity in Osagean–Meramecian (Mississippian) crinoid clades. Paleobiology 24:155176.
Kitazawa, K., Oji, T., and Sunamura, M.. 2007. Food composition of crinoids (Crinoidea: Echinodermata) in relation to stalk length and fan density: their paleoecological implications. Marine Biology 152:959968.
Kolbe, S. E., Lockwood, R., and Hunt, G.. 2011. Does morphological variation buffer against extinction? A test using veneroid bivalves from the Plio-Pleistocene of Florida. Paleobiology 37:355368.
Liow, L. H. 2004. A test of Simpson's “rule of the survival of the relatively unspecialized” using fossil crinoids. American Naturalist 164:431443.
Liow, L. H. 2006. Do deviants live longer? Morphology and longevity in trachyleberidid ostracodes. Paleobiology 32:5569.
Liow, L. H. 2007. Does versatility as measured by geographic range, bathymetric range and morphological variability contribute to taxon longevity? Global Ecology and Biogeography 16:117128.
Lockwood, R. 2005. Body size, extinction events, and the early Cenozoic record of veneroid bivalves: a new role for recoveries? Paleobiology 31:578590.
Losos, J. B. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11:9951003.
Lyons, S. K., Miller, J. H., Fraser, D., Smith, F. A., Boyer, A., Lindsey, E., and Mychajliw, A. M.. 2016. The changing role of mammal life histories in Late Quaternary extinction vulnerability on continents and islands. Biology Letters 12:20160342.
Macurda, D. B., and Meyer, D. L.. 1974. Feeding posture of modern stalked crinoids. Nature 247:394396.
McKinney, M. L. 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics 28:495516.
Messing, C. G., Hoggett, A. K., Vail, L. L., Rouse, G. W., and Rowe, F. W. E.. 2017. Class Crinoidea. Pp. 167225 in O'Hara, T. and Byrne, M., Australian echinoderms: biology, ecology and evolution. CSIRO Publishing, Melbourne, and ABRS, Canberra.
Meyer, D. L. 1973. Feeding behavior and ecology of shallow-water unstalked crinoids (Echinodermata) in the Caribbean Sea. Marine Biology 22:105129.
Molina-Venegas, R., and Rodríguez, M. A.. 2017. Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evolutionary Biology 17:53.
Nagelkerke, N. J. D. 1991. A note on a general definition of the coefficient of determination. Biometrika 78:692692.
Norell, M. A. 1992. Taxic origin and temporal diversity: the effect of phylogeny. Pp. 89118 in Novacek, M. J. and Wheeler, Q. D., Extinction and phylogeny. Columbia University Press, New York.
Nurnberg, S., and Aberhan, M.. 2013. Habitat breadth and geographic range predict diversity dynamics in marine Mesozoic bivalves. Paleobiology 39:360372.
Okasha, S. 2006. Evolution and the levels of selection. Oxford University Press, New York.
Pagel, M. D. 1999. Inferring the historical patterns of biological evolution. Nature 301:877884.
Paradis, E., Claude, J., and Strimmer, K.. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289290.
Payne, J. L., and Finnegan, S.. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.
Pianka, E. R., Vitt, L. J., Pelegrin, N., Fitzgerald, D. B., and Winemiller, K. O.. 2017. Toward a periodic table of niches, or exploring the lizard niche hypervolume. American Naturalist 190:601616.
Pinheiro, J., Bates, D., DebRoy, S., and Sarkar, D.. 2018. R Core Team (2018). nlme: linear and nonlinear mixed effects models. R package version 3.1–137.
Powell, M.G. 2007. Geographic range and genus longevity of late Paleozoic brachiopods. Paleobiology 33:530546.
Purvis, A. 2008. Phylogenetic approaches to the study of extinction. Annual Review of Ecology, Evolution, and Systematics 39:301319.
Purvis, A., Gittleman, J. L., Cowlishaw, G., and Mace, G. M.. 2000. Predicting extinction risk in declining species. Proceedings of the Royal Society of London B 267:1947–52.
Puttick, M. N., Kriwet, J., Wen, W., Hu, S., Thomas, G. H., and Benton, M. J.. 2017. Body length of bony fishes was not a selective factor during the biggest mass extinction of all time. Palaeontology 60:727741.
Rabosky, D. L., and McCune, A. R.. 2010. Reinventing species selection with molecular phylogenies. Trends in Ecology and Evolution 25:6874.
Revell, L. J. 2009. Size-correction and principal components for interspecific comparative studies. Evolution 63:32583268.
Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3:217223.
Rohlf, F. J. 2007. A comment on phylogenetic correction. Evolution 60:15091515.
Selya, A. S., Rose, J. S., Dierker, L. C., Hedeker, D., and Mermelstein, R. J.. 2012. A practical guide to calculating Cohen's f 2, a measurement of local effect size, from PROC MIXED. Frontiers in Psychology 3:16.
Simpson, C. 2010. Species selection and driven mechanisms jointly generate a large-scale morphological trend in monobathrid crinoids. Paleobiology 36:481496.
Simpson, G. G. 1944. Tempo and mode in evolution. Columbia University Press, New York.
Smith, A. B. 1994. Systematics and the fossil record: documenting evolutionary patterns. Blackwell Scientific, Oxford.
Smith, J. T., and Roy, K.. 2006. Selectivity during background extinction: Plio-Pleistocene scallops in California. Paleobiology 32:408416.
Smits, P. D. 2015. Expected time-invariant effects of biological traits on mammal species duration. Proceedings of the National Academy of Sciences USA 112:1301513020.
Soul, L. C., and Friedman, M.. 2017. Bias in phylogenetic measurements of extinction and a case study of end-Permian tetrapods. Palaeontology 60:179185.
Stadler, T. 2011. Mammalian phylogeny reveals recent diversification rate shifts. Proceedings of the National Academy of Sciences USA 108:61876192.
Symonds, M. R., and Blomberg, S. P.. 2014. A primer on phylogenetic generalised least squares. Pp. 105130 in Garamszegi, L. Z., ed., Modern phylogenetic comparative methods and their application in evolutionary biology. Springer-Verlag, Berlin.
Thomas, C.D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F., De Siqueira, M. F., Grainger, A., Hannah, L., and Hughes, L.. 2004. Extinction risk from climate change. Nature 427:145148.
Tomiya, S. 2013. Body size and extinction risk in terrestrial mammals above the species level. American Naturalist 182:E196E214.
Villier, L., and Korn, D.. 2004. Morphological disparity of ammonoids and the mark of Permian mass extinctions. Science 306:264266.
Vrba, E. S. 1984. What is species selection? Systematic Zoology 33:318328.
Watkins, R., and Hurst, J. M.. 1977. Community relations of Silurian crinoids at Dudley, England. Paleobiology 3:207217.
Webster, G. D., and Webster, D. W.. 2014. Bibliography and index of Paleozoic crinoids, coronates, and hemistreptocrinoids, 1758–2012. http://crinoids.azurewebsites.net, accessed 12 July 2016.
Wiens, J. J. 2004. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58:193197.
Williams, G. C. 1975. Sex and evolution. Princeton University Press, Princeton, N.J.
Wootton, J. T. 1994. Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology 75:151165.

Hierarchical controls on extinction selectivity across the diplobathrid crinoid phylogeny

  • Selina R. Cole (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.