Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-24T10:10:15.123Z Has data issue: false hasContentIssue false

Heterochrony in bourgueticrinid sea-lilies at the Cretaceous/Tertiary boundary

Published online by Cambridge University Press:  20 May 2016

Carsten R. Kjaer
Affiliation:
Department of Geology, University of Aarhus, C. F. M⊘ller Allé, Dk 8000 Aarhus C, Denmark. E-mail: geolet@aau.dk
Erik Thomsen
Affiliation:
Department of Geology, University of Aarhus, C. F. M⊘ller Allé, Dk 8000 Aarhus C, Denmark. E-mail: geolet@aau.dk

Abstract

The Cretaceous/Tertiary boundary event exerted a deep influence on the life of the benthic invertebrates in the Danish Basin. The density and taxonomic diversity of most groups fell abruptly and the lowermost Danian strata are almost barren of invertebrates. The echinoderms, and among them in particular crinoids of the family Bourgueticrinidae, are the only group that deviates form this general pattern and show an increase in the strata immediately above the boundary. This exceptional development is accompanied by a heterochronic change in which the largest element of the bourgueticrinid theca, the proximale, is lost by paedomorphosis (neoteny). In the Late Cretaceous bourgueticrinids the proximale is formed during early ontogeny by the incorporation of a columnal element into the theca, and the addition of new columnals stops once the proximale is formed. The paedomorphic change and the elimination of the proximale allow, in principle, columnals to be added throughout life. This new development is probably the result of a selection for longer stems. It is successful from the very beginning and Democrinus maximus, the earliest bourgueticrinid species in the Danish Basin without a proximale, makes up about 90% of the crinoid fauna in the lowermost Danian deposits.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5: 296317.CrossRefGoogle Scholar
Breton, G. 1997. Patterns and processes of heterochrony in Mesozoic goniasterid sea-stars. Lethaia 30: 135144.Google Scholar
D'Hondt, S., Herbert, T. D., King, J., and Gibson, C. 1996. Planktic foraminifera, asteroids, and marine production: death and recovery at the Cretaceous-Tertiary boundary. in Ryder, G. T., Fastovsky, D. E., Gartner, S. eds. New developments regarding the K/T event and other catastrophes in earth history. Geological Society of America Special Paper. 307: 303317.Google Scholar
Dommergues, J.-L. 1990. Ammonoids. Pp. 162187. in McNamara, K. J. ed. Evolutionary trends. Belhaven, London.Google Scholar
Donovan, S. K. 1996. Comparative morphology of the stems of the extant bathycrinid Democrinus Perrier and the Upper Palaeozoic platycrinitids (Echinodermata, Crinoidea). Bulletin of the Mizunami Fossil Museum 23: 127.Google Scholar
Feist, R. 1995. Effect of paedomorphosis in eye reduction on patterns of evolution and extinction in trilobites. Pp. 225244. in McNamara, 1995.Google Scholar
Gislén, T. 1938. A revision of the recent Bathycrinidae. Lunds Universitets Årsskrift. N. F. Avdeling 2,. Vol. 34(10): 130.Google Scholar
Gould, S. J. 1977. Ontogeny and phylogeny. Belknap Press, Harvard University Press, Cambridge.Google Scholar
Hagenow, F. v. 1876. in F. A. Quenstedt. Petrefaktenkunde Deutschlands. 1. Abteilung. Vol. 4. Fues's, Leipzig.Google Scholar
Håkansson, E. and Pedersen, S. S. 1992. Geological map of Denmark. Varv, Copenhagen [In Danish].Google Scholar
Håkansson, E. and Thomsen, E. 1979. Distribution and types of bryozoan communities at the boundary in Denmark. Pp. 7891. in Birkelund, T., Bromley, R. G. eds. Cretaceous-Tertiary boundary events I. University of Copenhagen, Copenhagen.Google Scholar
Håkansson, E. and Thomsen, E. 1998. Benthic extinction and recovery patterns at the K/T boundary in shallow water carbonates, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology (in press).Google Scholar
Håkansson, E., Bromley, R. G., and Perch-Nielsen, K. 1974. Maastrichtian chalk of north-west Europe—a pelagic shelf sediment. in Hsü, K. J.Jenkyns, H. C. eds. International Association of Sedimentologists Special Publication. 1: 211233. Blackwell Scientific, Oxford.Google Scholar
Hyman, L. H. 1955. The invertebrates. Vol. 4. eds. Echinodermata. McGraw-Hill, New York.Google Scholar
Jagt, J. W. M. 1994. Well-preserved bourgueticrinid crinoids from the late Maastrichtian of the Netherlands. Pp. 221222. in David, D., Guille, A., Féral, J-P., Roux, M. eds. Echinoderms through time. Proceedings of the eighth international echinoderm conference, Dijon. Balkema, Rotterdam.Google Scholar
Jagt, J. W. M. 1995. Late Cretaceous and early Cainozoic crinoid assemblages from northeast Belgium and the southeast Netherlands. Pp. 185196. in Emson, R., Smith, A., Campbell, A. eds. Echinoderm research 1995. Proceedings of the fourth European echinoderms colloquium. Balkema, Rotterdam.Google Scholar
Johansen, M. B. 1987. Brachiopods from the Maastrichtian-Danian boundary sequence at Nye Kl⊘v, Jylland, Denmark. Fossils and Strata 20: 1100.Google Scholar
Johansen, M. B. 1988. Brachiopod extinctions in the Upper Cretaceous to lowermost Tertiary chalk of Northwest Europe. Revista Española de Paleontología, Numero Extraordinario. Paleontology and Evolution, Extinction Events: 4156.Google Scholar
Johansen, M. B. 1989. Background extinction and mass extinction of the brachiopods from the chalk of Northwest Europe. Palaios 4: 243250.CrossRefGoogle Scholar
Klikushin, V. G. 1982. Cretaceous and Paleogene bourgueticrinina (Echinodermata, Crinoidea) of the USSR. Geobios 15: 811843.Google Scholar
Korn, D. 1995. Paedomorphosis of ammonoids as a result of sealevel fluctuations in the Late Devonian Woclumeria Stufe. Lethaia 28: 155165.Google Scholar
Long, J. A. and McNamara, K. J. 1995. Heterochrony in dinosaur evolution. Pp. 151168. in McNamara, 1995.Google Scholar
MacLeod, N., Rawson, P. F., Forey, P. L., Banner, F. T., Boudagher-Fadel, M. K., Brown, P. R., Burnett, J. A., Chambers, P., Culver, S., and Evans, S. E. 1997. The Cretaceous-Tertiary biotic transition. Journal of the Geological Society, London 154: 265292.Google Scholar
McKinney, M. L. 1988. Heterochrony in evolution: a multidisciplinary approach. Plenum, New York.Google Scholar
McKinney, M. L. and McNamara, K. J. 1991. Heterochrony: the evolution of ontogeny. Plenum, New York.Google Scholar
McNamara, K. J. 1985. Taxonomy and evolution of spantangoid echinoid Protenaster. Palaeontology 28: 311330.Google Scholar
McNamara, K. J. 1986a. A guide to the nomenclature of heterochrony. Journal of Paleontology 60: 413.Google Scholar
McNamara, K. J. 1986b. The role of heterochrony in the evolution of Cambrian trillobites. Biological Reviews 61: 121156.Google Scholar
McNamara, K. J. 1988. Heterochrony and the evolution of echinoids. Pp. 149163. in Paul, C. R. C., Smith, A. B. eds. Echinoderm phylogeny and evolutionary biology. Oxford University Press, Oxford.Google Scholar
McNamara, K. J. 1990. Evolutionary trends. Belhaven, London.Google Scholar
McNamara, K. J. 1995. Evolutionary change and heterochrony. Wiley, Chichester, England.Google Scholar
Moore, R. C. 1967. Unique stalked crinoids from Upper Cretaceous of Mississippi. University of Kansas Paleontological Contributions 17: 135.Google Scholar
Nielsen, K. B. 1913. The crinoids of the Danish chalk deposits. Danmarks Geologiske Unders⊘gelser, 2. Række, 26. Copenhagen. [In Danish.].Google Scholar
Nielsen, K. B. 1915. Rhizocrinus maximus n.sp. and some remarks on Bourgueticrinus danicus Br. N. Meddelelser Dansk Geologisk Forening. 4: 391394. [In Danish.].Google Scholar
Paul, C. R. C. and Mitchell, S. F. 1994. Is famine a common factor in marine mass extinctions?. Geology 22: 679682.Google Scholar
Rasmussen, H. W. 1961. A mongraph on the cretaceous crinoidea. Det Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter 12: 1428.Google Scholar
Rasmussen, H. W. 1978. Articulata (classification of). Pp. T813T928in Ubaghs, G. eds. Echinodermata 2, Crinoidea. Part T of R. C. Moore, C. Teichert eds. Treatise on invertebrate paleontology. Geological Society of America and University of Kansas, Boulder, Colo.Google Scholar
Richardson, M. K. 1995. Heterochrony and the phylotypic period. Developmental Biology 172: 412421.CrossRefGoogle ScholarPubMed
Roux, M. 1978. Ontogeny, variability and evolution of functional morphology in the stem and theca of millericrinida (echinoderms, crinoids). Geobios 11: 213241. [In French.].CrossRefGoogle Scholar
Roux, M. 1987. Evolutionary ecology and biogeography of recent stalked crinoids as a model for the fossil record. Pp. 153. in Mangoux, J., Lawrence, J. M. eds. Echinoderm studies 2. Balkema, Rotterdam.Google Scholar
Shea, B. T. 1989. Heterochrony in human evolution: the case for neoteny reconsidered. Yearbook of Physical Anthropology 32: 69101.Google Scholar
Simms, M. J. 1988. The role of heterochrony in the evolution of post-Palaeozoic crinoids. Pp. 97102. in Burke, R. D., Mladenov, P. V., Lambert, P., Parsley, R. L. eds. Proceedings of the sixth international echinoderm conference, Victoria. Balkema, Rotterdam.Google Scholar
Simms, M. J. 1990. Crinoids. pp. 188204in McNamara, K. J. ed. Evolutionary trends. Belhaven, London.Google Scholar
Simms, M. J., Gale, A. S., Gilliland, P., Rose, E. P. F., and Sevastopulo, G. D. 1993. Echinodermata. pp. 491528in Benton, M. J. ed. The fossil record 2. Chapman and Hall, London.Google Scholar
Smith, A. B. and Jeffery, C. H. 1998. Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392: 6971.Google Scholar
Surlyk, F. 1972. Morphological adaptations and population structures of the Danish chalk brachiopods (Maa., U. Cret.). Det Kongelige Danske Videnskabelige Selskab, Biologiske Skrifter 19 2: 157.Google Scholar
Surlyk, F. 1974. Life habit, feeding mechanism and population structure of the Cretaceous brachiopod genus Aemula. Palaeogeography, Palaeoclimatology, Palaeoecology 15: 185203.Google Scholar
Surlyk, F. and Birkelund, T. 1977. An integrated stratigraphical study of fossil assemblages from the Maastrichtian White Chalk of NW Europe. pp. 259281in Kaufmann, E. G., Hazel, J. E. eds. Concepts and methods of biostratigraphy. Dowden, Hutchinson and Ross, Stroudsburg, Penn.Google Scholar
Surlyk, F. and Johansen, M. B. 1984. End-Cretaceous brachiopod extinctions in the chalk of Denmark. Science 223: 11741177.CrossRefGoogle ScholarPubMed
Swan, A. R. H. 1988. Heterochronic trends in Namurian ammonoid evolution. Palaeontology 31: 10331051.Google Scholar
Thomsen, E. 1995. Limestone and chalk in the Danish subsurface. Aarhus Geokompendium 1: 3167. [In Danish.].Google Scholar
Wray, G. A. 1995. Causes and consequences of heterochrony in early echinoderm development. pp. 197223in McNamara 1995.Google Scholar