Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T02:30:45.552Z Has data issue: false hasContentIssue false

Global climate change and North American mammalian evolution

Published online by Cambridge University Press:  26 February 2019

John Alroy
Affiliation:
National Center for Ecological Analysis and Synthesis, University of California, 735 State Street, Santa Barbara, California 93101. E-mail: alroy@nceas.ucsb.edu
Paul L. Koch
Affiliation:
Department of Earth Sciences, University of California, 1156 High Street, Santa Cruz, California 95064. E-mail: pkoch@earthsci.ucsc.edu, jzachos@earthsci.ucsc.edu
James C. Zachos
Affiliation:
Department of Earth Sciences, University of California, 1156 High Street, Santa Cruz, California 95064. E-mail: pkoch@earthsci.ucsc.edu, jzachos@earthsci.ucsc.edu

Abstract

We compare refined data sets for Atlantic benthic foraminiferal oxygen isotope ratios and for North American mammalian diversity, faunal turnover, and body mass distributions. Each data set spans the late Paleocene through Pleistocene and has temporal resolution of 1.0 m.y.; the mammal data are restricted to western North America. We use the isotope data to compute five separate time series: oxygen isotope ratios at the midpoint of each 1.0-m.y. bin; changes in these ratios across bins; absolute values of these changes (= isotopic volatility); standard deviations of multiple isotope measurements within each bin; and standard deviations that have been detrended and corrected for serial correlation. For the mammals, we compute 12 different variables: standing diversity at the start of each bin; per-lineage origination and extinction rates; total turnover; net diversification; the absolute value of net diversification (= diversification volatility); change in proportional representation of major orders, as measured by a simple index and by a G-statistic; and the mean, standard deviation, skewness, and kurtosis of body mass. Simple and liberal statistical analyses fail to show any consistent relationship between any two isotope and mammalian time series, other than some unavoidable correlations between a few untransformed, highly autocorrelated time series like the raw isotope and mean body mass curves. Standard methods of detrending and differencing remove these correlations. Some of the major climate shifts indicated by oxygen isotope records do correspond to major ecological and evolutionary transitions in the mammalian biota, but the nature of these correspondences is unpredictable, and several other such transitions occur at times of relatively little global climate change. We conclude that given currently available climate records, we cannot show that the impact of climate change on the broad patterns of mammalian evolution involves linear forcings; instead, we see only the relatively unpredictable effects of a few major events. Over the scale of the whole Cenozoic, intrinsic, biotic factors like logistic diversity dynamics and within-lineage evolutionary trends seem to be far more important.

Type
Research Article
Copyright
Copyright © 2000 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 1992. Conjunction among taxonomic distributions and the Miocene mammalian biochronology of the Great Plains. Paleobiology 18:326343.Google Scholar
Alroy, J. 1994. Appearance event ordination: a new biochronologic method. Paleobiology 20:191207.Google Scholar
Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology 127:285311.Google Scholar
Alroy, J. 1998a. Diachrony of mammalian appearance events: implications for biochronology. Geology 26:2327.Google Scholar
Alroy, J. 1998b. Cope's rule and the dynamics of body mass evolution in North American mammals. Science 280:731734.Google Scholar
Alroy, J. 1998c. Diachrony of mammalian appearance events: implications for biochronology—Reply. Geology 26:956958.Google Scholar
Alroy, J. 1998d. Equilibrial diversity dynamics in North American mammals. Pp. 232287 in McKinney, M. L. and Drake, J., eds. Biodiversity dynamics: turnover of populations, taxa and communities. Columbia University Press, New York.Google Scholar
Alroy, J. 1999a. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Systematic Biology 48:107118.Google Scholar
Alroy, J. 1999b. Putting North America's end-Pleistocene megafaunal extinction in context: large scale analyses of spatial patterns, extinction rates, and size distributions. Pp. 105143 in MacPhee, R. D. E., ed. Extinctions in near time: causes, contexts, and consequences. Plenum, New York.Google Scholar
Alroy, J. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707733.Google Scholar
Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause of the Cretaceous-Tertiary extinction. Science 208:10951108.Google Scholar
Aubry, M.-P., Lucas, S. G., and Berggren, W. A., eds. 1998. Late Paleocene-early Eocene climatic and biotic events in the marine and terrestrial records. Columbia University Press, New York.Google Scholar
Bains, S., Corfield, R. M., and Norris, R. D. 1999. Mechanisms of climate warming at the end of the Paleocene. Science 285:724727.Google Scholar
Bao, H. M., Koch, P. L., and Rumble, D. 1999. Paleocene-Eocene climatic variation in western North America: evidence from the delta O-18 of pedogenic hematite. Geological Society of America Bulletin 111:14051415.Google Scholar
Barnosky, A. D. 1989. The late Pleistocene event as a paradigm for widespread mammal extinction. Pp. 235254 in Donovan, S. K., ed. Mass extinctions: processes and evidence. Bellhaven, London.Google Scholar
Beard, K. C. 1998. East of Eden: Asia as an important center of taxonomic origination in mammalian evolution. Bulletin of the Carnegie Museum of Natural History 34:539.Google Scholar
Behrensmeyer, A. K., Todd, N. E., Potts, R., and McBrinn, G. E. 1997. Late Pliocene faunal turnover in the Turkana Basin, Kenya and Ethiopia. Science 278:15891594.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. III, and Aubry, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy. SEPM Special Publication 54:129212.Google Scholar
Brass, G. W., Southam, J. R., and Peterson, W. H. 1982. Warm saline bottom water in the ancient ocean. Nature 296:620623.Google Scholar
Brown, J. H., and Nicoletto, P. F. 1991. Spatial scaling of species composition—body masses of North American land mammals. American Naturalist 138:14781512.Google Scholar
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., and Ehleringer, J. R. 1997. Global vegetation change through the Miocene / Pliocene boundary. Nature 389:153158.Google Scholar
Cerling, T. E., Ehleringer, J. R., and Harris, J. M. 1998. Carbon dioxide starvation, the development of C-4 ecosystems, and mammalian evolution. Philosophical Transactions of the Royal Society of London B 353:159170.Google Scholar
Clyde, W. C., and Gingerich, P. D. 1998. Mammalian community response to the latest Paleocene thermal maximum: an isotaphonomic study in the northern Bighorn Basin, Wyoming. Geology 26:10111014.Google Scholar
Damuth, J. 1990. Problems in estimating body masses of archaic ungulates using dental measurements. Pp. 229253 in Damuth, J. and MacFadden, B. J., eds. Body size in mammalian paleobiology. Cambridge University Press, Cambridge.Google Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C. 1951. Carbonate-water isotopic temperature scale. Geological Society of America Bulletin 62:417425.Google Scholar
Foote, M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology 25:1115.Google Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: general problems. Paleobiology 26:578605.Google Scholar
Fricke, H. C., Clyde, W. C., O'Neil, J. R., and Gingerich, P. D. 1998. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming). Earth and Planetary Science Letters 160:193208.Google Scholar
Gagnon, M. 1997. Ecological diversity and community ecology in the Fayum sequence (Egypt). Journal of Human Evolution 32:133160.Google Scholar
Gilinsky, N. L. 1994. Volatility and the Phanerozoic decline in background extinction intensity. Paleobiology 20:445458.Google Scholar
Gingerich, P. D. 1989. New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage. University of Michigan Papers on Paleontology 28:197.Google Scholar
Gunnell, G. F., Morgan, M. E., Maas, M. C., and Gingerich, P. D. 1995. Comparative paleoecology of Paleogene and Neogene mammalian faunas: trophic structure and composition. Palaeogeography, Palaeoclimatology, Palaeoecology 115:265286.Google Scholar
Hildebrand, A. R., Penfield, G. T., Kring, D., Pilkington, M., Camargo, A., Jacobsen, Z. S. B., and Boynton, W. 1991. Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan peninsula, Mexico. Geology 19:867871.Google Scholar
Hooker, J. J. 1998. Mammalian faunal change across the Paleocene-Eocene transition in Europe. Pp. 428450 in Aubry, M.-P., Lucas, S. G., and Berggren, W. A., eds. Late Paleocene–early Eocene climatic and biotic events in the marine and terrestrial records. Columbia University Press, New York.Google Scholar
Hunter, J. P., and Jernvall, J. 1995. The hypocone as a key innovation in mammalian evolution. Proceedings of the National Academy of Sciences USA 92:1071810722.Google Scholar
Janis, C. M. 1993. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology and Systematics 24:467500.Google Scholar
Janis, C. M. 1997. Ungulate teeth, diets, and climatic changes at the Eocene/Oligocene boundary. Zoology: Analysis of Complex Systems 100:203220.Google Scholar
Janis, C. M., and Wilhelm, P. B. 1993. Were there mammalian pursuit predators in the Tertiary? Dances with wolf avatars. Journal of Mammalian Evolution 1:103125.Google Scholar
Jernvall, J., Hunter, J. P., and Fortelius, M. 1996. Molar tooth diversity, disparity, and ecology in Cenozoic ungulate radiations. Science 274:14891492.Google Scholar
Kaufman, D. M. 1995. Diversity of New World mammals: universality of the latitudinal gradients of species and bauplans. Journal of Mammalogy 76:322334.Google Scholar
Kennett, J. P., and Stott, L. D. 1991. Abrupt deep-sea warming, paleoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353:225229.Google Scholar
Koch, P. L. 1998. Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences 26:573613.Google Scholar
Koch, P. L., Zachos, J. C., and Gingerich, P. D. 1992. Correlation between isotope records in marine and continental carbon reservoirs near the Paleocene-Eocene boundary. Nature 358:319322.Google Scholar
Koch, P. L., Zachos, J. C., and Dettman, D. L. 1995. Stable-isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA). Palaeogeography Palaeoclimatology Palaeoecology 115:6189.Google Scholar
Krause, D. W., and Maas, M. C. 1990. The biogeographic origins of late Paleocene-early Eocene mammalian immigrants to the Western Interior of North America. Pp. 71105 in Bown, T. M. and Rose, K. D., eds. Dawn of the Age of Mammals in the northern part of the Rocky Mountain Interior, North America. Geological Society of America Special Paper 243.Google Scholar
Lear, C. H., Elderfield, H., and Wilson, P. A. 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287:269272.Google Scholar
Legendre, S. 1989. Les communautés de mammifères du Paléogène (Éocène supérieur et Oligocène) d'Europe occidentale: structures, milieux et évolution. Münchner Geowissenschaftliche Abhandlungen, Reihe A, Geologie und Paläontologie 16:1110.Google Scholar
Maas, M. C., Anthony, M. R. L., Gingerich, P. D., Gunnell, G. F., and Krause, D. W. 1995. Mammalian generic diversity and turnover in the Late Paleocene and Early Eocene of the Bighorn and Crazy Mountains Basins, Wyoming and Montana (USA). Palaeogeography, Palaeoclimatology, Palaeoecology 115:181207.Google Scholar
MacPhee, R. D. E., ed. 1999. Extinctions in near time: causes, contexts, and consequences. Plenum, New York.Google Scholar
Marquet, P. A., and Cofre, H. 1999. Large temporal and spatial scales in the structure of mammalian assemblages in South America: a macroecological approach. Oikos 85:299309.Google Scholar
Marshall, L. G., Webb, S. D., Sepkoski, J. J. Jr., and Raup, D. M. 1982. Mammalian evolution and the great American interchange. Science 215:13511357.Google Scholar
Matthew, W. D. 1915. Climate and evolution. Annals of the New York Academy of Sciences 24:171318.Google Scholar
McKinney, M. L. 1990. Classifying and analysing evolutionary trends. Pp. 2858 in McNamara, K. J., ed. Evolutionary trends. University of Arizona Press, Tucson.Google Scholar
Meng, J., and McKenna, M. C. 1998. Faunal turnovers of Palaeogene mammals from the Mongolian plateau. Nature 394:364367.Google Scholar
Miller, A. I. 1998. Biotic transitions in global marine diversity. Science 281:11571160.Google Scholar
Miller, K. G., Fairbanks, R. G., and Mountain, G. S. 1987. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2:119.Google Scholar
Norris, R. D. 1996. Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera. Paleobiology 22:461480.Google Scholar
Norris, R. D., and Röhl, U. 1999. Carbon cycling and chronology of climate warming during the Paleocene/Eocene transition. Nature 401:775778.Google Scholar
Pagani, M., Freeman, K. H., and Arthur, M. A. 1999. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285:876879.Google Scholar
Palmer, M. R., Pearson, P. N., and Cobb, S. J. 1998. Reconstructing past ocean pH-depth profiles. Science 282:14681471.Google Scholar
Prothero, D. R. 1999. Does climatic change drive mammalian evolution? GSA Today 9:17.Google Scholar
Prothero, D. R., and Heaton, T. H. 1996. Faunal stability during the Early Oligocene climatic crash. Palaeogeography, Palaeoclimatology, Palaeoecology 127:257283.Google Scholar
Rose, K. D. 1981. The Clarkforkian land-mammal age and mammalian faunal composition across the Paleocene–Eocene boundary. University of Michigan Papers on Paleontology 26:1196.Google Scholar
Rudwick, M. J. S. 1972. The meaning of fossils. Macdonald, London.Google Scholar
Schrag, D. P., Hampt, G., and Murray, D. W. 1996. Pore fluid constraints on the temperature and oxygen isotope composition of the glacial ocean. Science 272:19301932.Google Scholar
Shackleton, N. J., and Opdyke, N. D. 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28–238: oxygen isotope temperatures and ice volumes on a 105 to 106 year scale. Quaternary Research 3:3955.Google Scholar
Simpson, G. G. 1964. Species density of North American Recent mammals. Evolution 15:413446.Google Scholar
Sloan, L. C., Walker, J. C. G., and Moore, T. C. Jr. 1995. Possible role of oceanic heat transport in early Eocene climate. Paleoceanography 10:347356.Google Scholar
Spero, H. J., and Lea, D. W. 1993. Intraspecific stable isotope variability in the planktic foraminifer Globigerinoides sacculifer: results from laboratory experiments. Marine Micropaleontology 22:193232.Google Scholar
Stanley, S. M. 1998. Macroevolution: pattern and process. Johns Hopkins University Press, Baltimore.Google Scholar
Stucky, R. K. 1990. Evolution of land mammal diversity in North America during the Cenozoic. Pp. 375430 in Genoways, H. H., ed. Current mammalogy, Vol. 2. Plenum, New York.Google Scholar
van der Burgh, J., Visscher, H., Dilcher, D. L., and Kurschner, W. M. 1993. Paleoatmospheric signatures in Neogene fossil leaves. Science 260:17881790.Google Scholar
Van Valen, L. 1971. Adaptive zones and the orders of mammals. Evolution 25:420428.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Evolutionary Theory 1:130.Google Scholar
Van Valkenburgh, B., and Janis, C. M. 1993. Historical diversity patterns in North American large herbivores and carnivores. Pp. 330340 in Ricklefs, R. E. and Schluter, D., eds. Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago.Google Scholar
Vrba, E. S. 1985. Environment and evolution: alternative causes of the temporal distribution of evolutionary events. South African Journal of Science 81:229236.Google Scholar
Vrba, E. S. 1992. Mammals as a key to evolutionary theory. Journal of Mammalogy 73:128.Google Scholar
Vrba, E. S. 1995. The fossil record of African antelopes (Mammalia, Bovidae) in relation to human evolution and paleoclimate. Pp. 385424 in Vrba, E. S., Denton, G. H., Partridge, T. C. and Burckle, L. H., eds. Paleoclimate and evolution with emphasis on human origins. Yale University Press, New Haven, Conn.Google Scholar
Webb, S. D. 1977. A history of savannah vertebrates in the New World, Part I. North America. Annual Review of Ecology and Systematics 8:355380.Google Scholar
Webb, S. D. 1984. Ten million years of mammal extinction in North America. Pp. 189210 in Martin, P. S. and Klein, R. G., eds. Quaternary extinctions. University of Arizona Press, Tucson.Google Scholar
Wilf, P. 1997. When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology 23:373390.Google Scholar
Wilf, P. 2000. Late Paleocene–early Eocene climate changes in southwestern Wyoming: paleobotanical analysis. Geological Society of America Bulletin 112:292307.Google Scholar
Wilf, P., Wing, S. L., Greenwood, D. R., and Greenwood, C. L. 1998. Using fossil leaves as paleoprecipitation indicators: an Eocene example. Geology 26:203206.Google Scholar
Wing, S. L., Alroy, J., and Hickey, L. J. 1995. Plant and mammal diversity in the Paleocene to Early Eocene of the Bighorn Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 115:117155.Google Scholar
Wolfe, J. A. 1994. Tertiary climatic changes at middle latitudes of western North America. Palaeogeography, Palaeoclimatology, Palaeoecology 108:195205.Google Scholar
Woodburne, M. O. 1987. Cenozoic mammals of North America: geochronology and biostratigraphy. University of California Press, Berkeley.Google Scholar
Wright, J. D., Miller, K. G., and Fairbanks, R. G. 1992. Early and middle Miocene stable isotopes; implications for deepwater circulation and climate. Paleoceanography 7:357389.Google Scholar
Zachos, J. C., Lohmann, K. C., Walker, J. C. G., and Wise, S. W. 1993. Abrupt climate change and transient climates during the Paleogene: a marine perspective. Journal of Geology 101:191213.Google Scholar
Zachos, J. C., Stott, L. D., and Lohmann, K. C. 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography 9:353387.Google Scholar
Zachos, J. C., Quinn, T. M., and Salamy, K. A. 1996. High-resolution (104 years) deep-sea foraminiferal stable isotope records of Eocene–Oligocene climate transition. Paleoceanography 11:251266.Google Scholar
Zachos, J. C., Flower, B. P., and Paul, H. 1997. Orbitally paced climate oscillations across the Oligocene/Miocene boundary. Nature 388:567570.Google Scholar