Skip to main content Accessibility help

Estimating dispersal and evolutionary dynamics in diploporan blastozoans (Echinodermata) across the great Ordovician biodiversification event

  • Adriane R. Lam (a1), Sarah L. Sheffield (a2) and Nicholas J. Matzke (a3)


Echinoderms make up a substantial component of Ordovician marine invertebrates, yet their speciation and dispersal history as inferred within a rigorous phylogenetic and statistical framework is lacking. We use biogeographic stochastic mapping (BSM; implemented in the R package BioGeoBEARS) to infer ancestral area relationships and the number and type of dispersal events through the Ordovician for diploporan blastozoans and related species. The BSM analysis was divided into three time slices to analyze how dispersal paths changed before and during the great Ordovician biodiversification event (GOBE) and within the Late Ordovician mass extinction intervals. The best-fit biogeographic model incorporated jump dispersal, indicating this was an important speciation strategy. Reconstructed areas within the phylogeny indicate the first diploporan blastozoans likely originated within Baltica or Gondwana. Dispersal, jump dispersal, and sympatry dominated the BSM inference through the Ordovician, while dispersal paths varied in time. Long-distance dispersal events in the Early Ordovician indicate distance was not a significant predictor of dispersal, whereas increased dispersal events between Baltica and Laurentia are apparent during the GOBE, indicating these areas were important to blastozoan speciation. During the Late Ordovician, there is an increase in dispersal events among all paleocontinents. The drivers of dispersal are attributed to oceanic and epicontinental currents. Speciation events plotted against geochemical data indicate that blastozoans may not have responded to climate cooling events and other geochemical perturbations, but additional data will continue to shed light on the drivers of early Paleozoic blastozoan speciation and dispersal patterns.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimating dispersal and evolutionary dynamics in diploporan blastozoans (Echinodermata) across the great Ordovician biodiversification event
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Estimating dispersal and evolutionary dynamics in diploporan blastozoans (Echinodermata) across the great Ordovician biodiversification event
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Estimating dispersal and evolutionary dynamics in diploporan blastozoans (Echinodermata) across the great Ordovician biodiversification event
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.


Hide All

Present address: Department of Geological Sciences and Environmental Studies, Binghamton University, 4400 Vestal Parkway East, P.O. Box 6000, Binghamton, New York 13902, U.S.A.

Data available from the Dryad Digital Repository:

These authors contributed equally to this work and are therefore listed alphabetically by last name.



Hide All
Albanesi, G. L., Barnes, C. R., Trotter, J. A., Williams, I. S., and Bergström, S. M.. 2019. Comparative Lower–Middle Ordovician conodont oxygen isotope palaeothermometry of the Argentine Precordillera and Laurentian margins. Palaeogeography, Palaeoclimatology, Palaeoecology. doi: 10.1016/j.palaeo.2019.03.016.
Amberg, C. E. A, Collart, T., Salenbien, W., Egger, L. M., Munnecke, A., Nielsen, A. T., Monnet, C., Hammer, Ø., and Vandenbroucke, T. R. A. 2016. The nature of Ordovician limestone-marl alternations in the Oslo-Asker District (Norway): witnesses of primary glacio-eustasy or diagenetic rhythms? Scientific Reports 6:18787.
Amsden, T. W. 1974. Late Ordovician and Early Silurian articulate brachiopods from Oklahoma, southwestern Illinois, and eastern Missouri. Oklahoma Geological Survey Bulletin 119:1154p.
Amsden, T. W. 1986. Part I. Paleoenvironment of the Keel-Edgewood oolitic province and the Hirnantian strata of Europe, USSR, and China. Oklahoma Geological Survey Bulletin 139:155.
Baarli, B., Malay, M. C. D., Santos, A., Johnson, M. E., Silva, C. M., Meco, J., Cachão, M., and Mayoral, E. J.. 2017. Miocene to Pleistocene transatlantic dispersal of Ceratoconcha coral-dwelling barnacles and North Atlantic island biogeography. Palaeogeography, Palaeoclimatology, Palaeoecology 468:520528.
Barrick, J. E. 1986. Conodont faunas of the Keel and Cason Formations. Oklahoma Geological Survey Bulletin 139:5789.
Bauer, J. E. 2020. Paleobiogeography, paleoecology, diversity, and speciation patterns in the Eublastoidea (Blastozoa: Echinodermata). Paleobiology. doi: 10.1017/pab.2020.27.
Bauer, J. E., and Stigall, A. L.. 2014. Phylogenetic paleobiogeography of Late Ordovician Laurentian brachiopods. Estonian Journal of Earth Sciences 63:189194.
Bergström, S. M., Chen, X., Gutierrez-Marco, J. C., and Dronov, A.. 2009. The new chronostratigraphic classification of the Ordovician system and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia 42:97107.
Beuf, S., Biju-Duval, B., O. de Charpal, P. Rognon, Gariel, O., and Bennacef, A.. 1971. Les Grés du Paléozoique inférieur au Sahara: sédimentation et discontinuités, évolution structurale d'un craton. Publications de l'Institut Franc¸ais du Pe´trole, Editions Technip 18:1464.
Bollback, J. 2006. SIMMAP: Stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7:88.
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M. A., Rambaut, A., and Drummond, A. J.. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10:e1003537.
Branson, E. R., and Peck, R. E.. 1940. A new cystoid from the Ordovician of Oklahoma. Journal of Paleontology 14:8992.
Brenchley, P. J. 1995. Environmental changes associated with the “first strike” of the Late Ordovician mass extinction. Modern Geology 20:6972.
Brenchley, P. J., and Marshall, J. D.. 1999. Relative timing of critical events during the late Ordovician mass extinction—new data from Oslo. Acta-Universitatis Carolinae-Geologica 43:187190.
Brenchley, P. J., Marshall, J. D., Carden, G. A. F., Robertson, D. B. R., Long, D. G. F., Meidla, T., Hints, L., and Anderson, T. F.. 1994. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology 22:295–298.
Burnham, K. P., and Anderson, D. R.. 2002. Model selection and multimodel inference: a practical information-theoretical approach. Springer-Verlag, New York.
Censullo, S. M., and Stigall, A. L.. 2019. Did alternating dispersal and vicariance drive biodiversity increase during the Great Ordovician Biodiversification Event? A phylogenetic test using brachiopods. Geological Society of America Abstracts with Programs 51, doi: 10.1130/abs/2019AM-333129.
Clausen, S. 2004. New early Cambrian eocrinoids from the Iberian Chains (NE Spain) and their role in nonreefal benthic communities. Eclogae Geologicae Helveiae 97:371379.
Clausen, S., and Smith, A. B.. 2005. Palaeoanatomy and biological affinities of a Cambrian deuterostome. Nature 438:351354.
Clausen, S., and Smith, A. B.. 2008. Stem structure and evolution in the earliest pelmatozoan echinoderms. Journal of Paleontology 82:737748.
Cocks, L. R. M., and Torsvik, T. H.. 2011. The Palaeozoic geography of Laurentia and western Laurussia: a stable craton with mobile margins. Earth-Science Reviews 106:151.
Cole, S. R. 2019. Phylogeny and evolutionary history of diplobathrid crinoids (Echinodermata). Palaeontology 62:357373.
Congreve, C. R., Krug, A. Z., and Patzkowsky, M. E.. 2019. Evolutionary and biogeographical shifts in response to the Late Ordovician mass extinction. Palaeontology 62:267285.
Crowell, J. C. 1999. Pre-Mesozoic ice ages: their bearing on understanding the climate system. Geological Society of America Memoir 192.
Crowley, T. J., and Baum, S. K.. 1991. Toward reconciliation of Late Ordovician (~440 Ma) glaciation with very high CO2 levels. Journal of Geophysical Research: Atmospheres 96:2259722610.
Dabard, M.-P., Loi, A., Paris, F., Ghienne, J.-F., Pistis, M., and Vidal, M.. 2015. Sea-level curve for the Middle to early Late Ordovician in the Armorican Massif (western France): icehouse third-order glacio-eustatic cycles. Palaeogeography, Palaeoclimatology, Palaeoecology 436:96111.
Davis, K. E., Hill, J., Astrop, T. I., and Wills, M. A.. 2016. Global cooling as a driver of diversification in a major marine clade. Nature Communications 7:13003.
Deline, B. 2015. Quantifying morphological diversity in Early Paleozoic Echinoderms. Pp. 4548in Zamora, S. and Rábano, I., eds. Progress in echinoderm palaeobiology. Cuademos del Museo Geominero 19. Instituto Geológico y Minero de España, Madrid.
Deline, B., and Thomka, J. R.. 2017. The role of preservation on the quantification of morphology and patterns of disparity with Paleozoic echinoderms. Journal of Paleontology 91:618632.
Deline, B. J. R. Thompson, Smith, N. S., Zamora, S., Rahman, I. A., Sheffield, S. L., Ausich, W. I., Kammer, T. W., and Sumrall, C. D.. 2020. Evolution and development at the origin of a phylum. Current Biology 30. doi: 10.1016/j.cub.2020.02.054.
Dickson, J. A. D. 2004. Echinoderm skeletal preservation: calcite-aragonite seas and the Mg/Ca ratio of Phanerozoic oceans. Journal of Sedimentary Research 74:355365.
Dupin, J., Matzke, N. J., Särkinen, T., Knapp, S., Olmstead, R. G., Bohs, L., and Smith, S. D.. 2017. Bayesian estimation of the global biogeographical history of the Solanaceae. Journal of Biogeography 44:887899.
Edwards, C. T., Saltzman, M. R., Royer, D. L., and Fike, D. A.. 2017. Oxygenation as a driver of the Great Ordovician Biodiversification Event. Nature Geoscience 10:925929.
Edwards, C. T., Jones, C. M., and Fike, D. A.. 2018. Oxygen isotope (δ18O) trends measured from Early–Middle Ordovician conodont apatite using secondary ion mass spectrometry (SIMS): implications for ocean paleothermometry studies. Annual meeting of the International Geoscience Programme Project 653: Onset of the Great Ordovician Biodiversification Event 3, p. 31.
Elias, R. J. 1983. Middle and Late Ordovician solitary rugose corals of the Cincinnati Arch region. U.S. Geological Survey Professional Paper 1066-N:I–III.
Ettensohn, F. R. 2004. Modeling the nature and development of major Paleozoic clastic wedges in the Appalachian Basin, USA. Journal of Geodynamics 37:657681.
Ettensohn, F. R. 2010. Origin of Late Ordovician (mid-Mohawkian) temperate-water conditions on southeastern Laurentia: glacial or tectonic. The Ordovician earth system. Geological Society of America Special Paper 466:163175.
Ettensohn, F. R., Barnes, C. R., and Williams, S. H.. 1991. Flexural interpretation of relationships between Ordovician tectonism and stratigraphic sequences, central and southern Appalachians, USA. Pp. 213224in Witman, J. D. and Roy, K., eds. Advances in Ordovician geology. Geological Survey of Canada Paper 90-9.
Ettensohn, F. R., Hohman, J. C., Kulp, M. A., and Rast, N.. 2002. Evidence and implications of possible far-field responses to Taconian orogeny: Middle–Late Ordovician Lexington Platform and Sebree Trough, east-central United States. Southeastern Geology 41:136.
Eyles, N. 1993. Earth's glacial record and its tectonic setting. Earth-Science Reviews 35:1248.
Felsenstein, J. 2003. Inferring phylogenies. Oxford University Press, Oxford.
Finnegan, S., Bergmann, K., Eiler, J. M., Jones, D. S., Fike, D. A., Eisenman, I., Hughes, N. C., Tripati, A. K., and Fischer, W. W.. 2011. The magnitude and duration of Late Ordovician–Early Silurian glaciation. Science 331:903906.
Finnegan, S., Heim, N. A., Peters, S. E., and Fischer, W. W.. 2012. Climate change and the selective signature of the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences USA 109:68296834.
Finnegan, S. N., Rasmussen, C. M. Ø., and Harper, D. A. T.. 2016. Biogeographic and bathymetric determinants of brachiopod extinction and survival during the Late Ordovician mass extinction. Proceedings of the Royal Society of London B 283:201600007.
Fitton, J. G., and Hughes, D. J.. 1970. Volcanism and plate tectonics in the British Ordovician. Earth and Planetary Science Letters 8:223228.
Fortey, R. A. 1984. Global earlier Ordovician transgressions and regressions and their biological implications. Pp. 3750in Bruton, D. L., ed. Aspects of the Ordovician system. Universitetsforlaget Oslo, Oslo.
Fraass, A. J., Kelly, D. C., and Peters, S. E.. 2015. Macroevolutionary history of the planktic foraminifera. Annual Review of Earth and Planetary Sciences 43:139166.
Glen, R. A., Walshe, J. L., Barron, L. M., and Watkins, J. J.. 1998. Ordovician convergent-margin volcanism and tectonism in the Lachlan sector of east Gondwana. Geology 26:751754.
Hambrey, M. J. 1985. The Late Ordovician—Early Silurian glacial period. Palaeogeography, Palaeoclimatology, Palaeoecology 51:273289.
Haq, B. U., and Schutter, S. R.. 2008. A chronology of Paleozoic sea-level changes. Science 322:6468.
Harper, D. A. T. 2006. The Ordovician biodiversification: setting an agenda for marine life. Palaeogeography, Palaeoclimatology, Palaeoecology 232:148166.
Harper, D. A. T., Mac Niocaill, C., and Williams, S. H.. 1996. The palaeogeography of early Ordovician Iapetus terranes: an integration of faunal and palaeomagnetic constraints. Palaeogeography, Palaeoclimatology, Palaeoecology 121:297312.
Herrmann, A. D., Haupt, B. J., Patzkowsky, M. E., Seidov, D., and Slingerland, R. L.. 2004. Response of the Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: potential causes for long-term cooling and glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 210:385401.
Holland, S. M., and Patzkowsky, M. E.. 1997. Distal orogenic effects on peripheral bulge sedimentation: Middle and Upper Ordovician of the Nashville Dome. Journal of Sedimentary Research 67:250263.
Huelsenbeck, J. P., Nielsen, R., and Bollback, J. P.. 2003. Stochastic mapping of morphological characters. Systematic Biology 52:131158.
Hutton, D. H. W., and Murphy, F. C.. 1987. The Silurian of the Southern Uplands and Ireland as a successor basin to the end-Ordovician closure of Iapetus. Journal of the Geological Society 144:765772.
Jin, J., Harper, D. A. T., Cocks, L. R. M., McCausland, P. J. A., Rasmussen, C. M. Ø., and Sheehan, P.M.. 2013. Precisely locating the Ordovician equator in Laurentia. Geology 41:107110.
Jones, D. S., Martini, A. M., Fike, D. A., and Kaiho, K.. 2017. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from South China and Laurentia. Geology 45:631634.
Keith, B. D. 1989. Regional facies of the Upper Ordovician Series of eastern North America. The Trenton Group (Upper Ordovician Series) of Eastern North America. American Association of Petroleum Geologists Studies in Geology 26:116.
Klaus, K., Matzke, N. J.. 2019. Statistical comparison of trait-dependent biogeographical models indicates that podocarpaceae dispersal is influenced by both seed cone traits and geographical distance. Systematic Biology 69:6175.
Kolata, D. R., Huff, W. D., and Bergstro¨m, S. M.. 2001. The Ordovician Sebree trough: an oceanic passage to the Midcontinent United States. Geological Society of America Bulletin 113:10671078.
Krause, A. J., Mills, B. J. W., Zhang, S., Planavsky, N. J., Lenton, T. M., and Poulton, S. W.. 2018. Stepwise oxygenation of the Paleozoic atmosphere. Nature Communications 9:4081.
Kröger, B., and Lintulaakso, K.. 2017. RNames, a stratigraphical database designed for the statistical analysis of fossil occurrences. Palaeontologia Electronica 20:20.1.1T.
Lam, A. R., and Leckie, R. M.. 2020. Late Neogene and Quaternary diversity and taxonomy of subtropical to temperate planktic foraminifera across the Kuroshio Current Extension, northwest Pacific Ocean. Micropaleontology 66:177268.
Lam, A. R., and Stigall, A. L.. 2015. Pathways and mechanisms of Late Ordovician (Katian) faunal migrations of Laurentia and Baltica. Estonian Journal of Earth Sciences 64:6267.
Lam, A. R., Stigall, A. L., and Matzke, N. J.. 2018. Dispersal in the Ordovician: speciation patterns and paleobiogeographic analyses of brachiopods and trilobites. Palaeogeography, Palaeoclimatology, Palaeoecology 489:147165.
Lamsdell, J. C., Congreve, C. R., Hopkins, M. J., Krug, A. Z., and Patzkowsky, M. E.. 2017. Phylogenetic palaeoecology: tree-thinking and ecology in deep time. Trends in Ecology and Evolution 32:452463.
Landis, M., Matzke, N. J., Moore, B. R., and Huelsenbeck, J. P.. 2013. Bayesian analysis of biogeography when the number of areas is large. Systematic Biology 62:789804.
Lefebvre, B. 2007. Early Palaeozoic palaeobiogeography and palaeoecology of stylophoran echinoderms. Palaeogeography, Palaeoclimatology, Palaeoecology 245:156199.
Lefebvre, B., Ghobadipour, M., and Nardin, E.. 2005. Ordovician echinoderms from the Tabas and Damghan regions, Iran: palaeobiogeographical implications. Bulletin de la Société géologique de France 176:231242.
Lefebvre, V., Servais, T., François, L., and Averbuch, O.. 2010. Did a Katian large igneous province trigger the Late Ordovician glaciation? A hypothesis tested with a carbon cycle model. Palaeogeography, Palaeoclimatology, Palaeoecology 296:310319.
Lefebvre, B., Sumrall, C. D., Shroat-Lewis, R. A., Reich, M., Webster, G. D., Hunter, A. W., Nardin, E., Rozhnov, S. V., Guensberg, T. E., and Touzeau, A.. 2013. Palaeobiogeography of Ordovician echinoderms. Geological Society of London Memoir 38:173198.
Lenton, T. M., Daines, S. J., and Mills, B. J. W.. 2018. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews 178:128.
Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50:913925.
Liljeroth, M., Harper, D. A. T., Carlisle, H., and Nielsen, A. T.. 2017. Ordovician rhynchonelliformean brachiopods from Co. Waterford, SE Ireland: Palaeobiogeography of the Leinster Terrane. Wiley, Hoboken, N.J.
Matzke, N. J. 2013. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers in Biogeography 5:242248.
Matzke, N. J. 2014. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology 63:951970.
Matzke, N. J. 2019. BEASTMasteR code archive., accessed 12 December 2019.
Matzke, N. J., and Irmis, R. B.. 2018. Including autapomorphies in paleontological datasets is important for tip-dating with clocklike data, but not with non-clock data. PeerJ 6:e4553.
Matzke, N. J., and Wright, A.. 2016. Inferring node dates from tip dates in fossil Canidae: the importance of tree priors. Biology Letters 12:20160328.
McDonald-Spicer, C., Knerr, N. J., Encinas-Viso, F., and Schmidt-Lebuhn, A. N.. 2019. Big data for a large clade: bioregionalization and ancestral range estimation in the daisy family (Asteraceae). Journal of Biogeography 46:255267.
Melchin, M. J., Mitchell, C. E., Holmden, C., and Štorch, P.. 2013. Environmental changes in the Late Ordovician–early Silurian: review and new insights from black shales and nitrogen isotopes. GSA Bulletin 125:16351670.
Miller, A. I. 1997. Dissecting global diversity patterns: examples from the Ordovician Radiation. Annual Review of Ecology and Systematics 28:85104.
Miller, A. I. 2000. Conversations about Phanerozoic global diversity. Paleobiology 26:5373.
Mohibullah, M., Williams, M., Vandenbroucke, T. R. A., Sabbe, K., and Zalasiewicz, J. A.. 2012. Marine ostracod provinciality in the Late Ordovician of paleocontinental Laurentia and its environmental and geographic expression. PLoS ONE 7:e41682.
Nardin, E., and Lefebvre, B.. 2010. Unravelling extrinsic and intrinsic factors of the early Palaeozoic diversification of blastozoan echinoderms. Palaeogeography, Palaeoclimatology, Palaeoecology 294:142160.
Nielsen, R. 2002. Mapping mutations on phylogenies. Systematic Biology 51:729739.
Ogg, J. G., Ogg, G., and Gradstein, F. M.. 2016. A concise geologic time scale: 2016. Elsevier, Amsterdam.
O'Meara, B. C., Ané, C., Sanderson, M. J., and Wainwright, P. C.. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922933.
Paul, C. R. C. 1968. Morphology and function of dichoporite pore-structures in cystoids. Palaeontology 11:697730.
Paul, C. R. C. 1988. The phylogeny of the cystoids. Pp. 199213in Paul, C. R. C. and Smith, A. B., eds. Echinoderm phylogeny and evolutionary biology. Clarendon Press, Oxford.
Pedersen, R. B., Bruton, D. L., and Furnes, H.. 1992. Ordovician faunas, island arcs and ophiolites in the Scandinavian Caledonides. Terra Nova 4:217222.
Pohl, A., Donnadieu, Y., Le Hir, G., Ladant, J.-B., Dumas, C., Alvarez-Solas, J., and Vandenbroucke, T. R. A. 2016a. Glacial onset predated Late Ordovician climate cooling. Paleoceanography 31:800821.
Pohl, A., Nardin, E., Vandenbroucke, T. R. A., and Donnadieu, Y.. 2016b. High dependence of Ordovician ocean surface circulation on atmospheric CO2 levels. Palaeogeography, Palaeoclimatology, Palaeoecology 458:3951.
Pohl, A., Harper, D. A. T., Donnadieu, Y., Le Hir, G., Nardin, E., and Servais, T.. 2018. Possible patterns of marine primary productivity during the Great Ordovician Biodiversification Event. Lethaia 51:187197.
Pope, M. C., and Steffen, J. B.. 2003. Widespread, prolonged late Middle to Late Ordovician upwelling in North America: a proxy record of glaciation? Geology 31:6366.
Poussart, P. F., Weaver, A. J., and Barnes, C. R.. 1999. Late Ordovician glaciation under high atmospheric CO2: a coupled model analysis. Paleoceanography 14:542558.
Pruss, S. B., Finnegan, W. W.Fischer, and A. H.Knoll, . 2010. Carbonates in skeleton-poor seas: new insights from Cambrian and Ordovician strata of Laurentia. Palaios 25:7384.
Quinton, P. C., Percival, I. G., Zhen, Y., and Macleod, K. G.. 2015. Ordovician temperature trends: constraints from δ18O analysis of conodonts from New South Wales, Australia. Stratigraphy 12:6166.
Quinton, P. C., Law, S., Macleod, K. G., Herrmann, A. D., Haynes, J. T., and Leslie, S. A.. 2017. Testing the early Late Ordovician cool-water hypothesis with oxygen isotopes from conodont apatite. Geological Magazine 155:17271741.
Quinton, P. C., Speir, L., Miller, J., Ethington, R., and MacLeod, K. G.. 2018. Extreme heat in the Early Ordovician. Palaios 33:353360.
Rahman, I. A., and Zamora, S.. 2009. The oldest cinctan caproid (stem-group Echinodermata), and the evolution of the water vascular system. Zoological Journal of the Linnean Society 157:420432.
Rasmussen, C. M. Ø., and Harper, D. A. T.. 2011. Did the amalgamation of continents drive the end Ordovician mass extinctions?. Palaeogeography, Palaeoclimatology, Palaeoecology 311:4862.
Rasmussen, C. M. Ø., Ullmann, C. V., Jakobsen, K. G., Lindskog, A., Hansen, J., Hansen, T., Eriksson, M. E., Dronov, A., Frei, R., Korte, C., Nielsen, A. T., and Harper, D. A. T.. 2016. Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse. Scientific Reports 6:18884.
Ree, R. H., and Sanmartín, I.. 2018. Conceptual and statistical problems with the DEC + J model of founder-event speciation and its comparison with DEC via model selection. Journal of Biogeography 45:741774.
Ree, R. H., and Smith, S. A.. 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57:414.
Richards, V. P., DeBiasse, M. B., and Shivii, M. S.. 2015. Genetic evidence supports larval retention in the western Caribbean for an invertebrate with high dispersal capability (Ophiothrix suensonii: Echinodermata, Ophiuroidea). Coral Reefs 34:313325.
Robison, R. A. 1965. Middle Cambrian eocrinoids from western North America. Journal of Paleontology 39: 355364.
Ronquist, F. 1997. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology 46:195203.
Rozhnov, S. V. 2013. A new genus of Parablastoidea (Echinodermata) from the Middle Ordovician of Ladoga glint on the Volkhov River (Ladoga region). Paleontological Journal 47:154161.
Saltzman, M. R., and Young, S. A.. 2005. Long-lived glaciations in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology 33:109112.
Saltzman, M. R., Edwards, C. T., Adrain, J. M., and Westrop, S. R.. 2015. Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations. Geology 43:807810.
Samygin, S. G. 2019. Formation of the back-arc slope of the island arc of Chingiz Caledonide Range in the Eastern Kazakhstan. Geotectonics 53:231238.
Saupe, E. E., Qiao, H., Donnadieu, Y., Farnsworth, A., Kennedy-Asser, A. T., Ladant, J.-B., Lunt, D. J., Pohl, A., Valdes, P., and Finnegan, S.. 2020. Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nature Geoscience 13:6570.
Scotese, C. R., and McKerrow, W. S.. 1991. Ordovician plate tectonic reconstructions. Geological Survey of Canada Paper 90:225234.
Scotese, C. R., Boucot, A. J., and McKerrow, W. S.. 1999. Gondwanan palaeogeography and paleoclimatology. Journal of African Earth Sciences 28:99114.
Shanmugam, G., and Lash, G. G.. 1982. Analogous tectonic evolution of the Ordovician foredeeps, southern and central Appalachians. Geology 10:562566.
Sheehan, P. M. 2001. The late Ordovician mass extinction. Annual Review of Earth and Planetary Sciences 29:331364.
Sheffield, S. L., and Sumrall, C. D.. 2017. Generic revision of the Holocystitidae of North America (Diploporita, Echinodermata) based on universal elemental homology. Journal of Paleontology 91:755766.
Sheffield, S. L., and Sumrall, C. D.. 2019a. The phylogeny of the Diploporita: a polyphyletic assemblage of blastozoan echinoderms. Journal of Paleontology 93:740752.
Sheffield, S. L., and Sumrall, C. D.. 2019b. A re-interpretation of the ambulacral system of Eumorphocystis (Blastozoa: Echinodermata) and its bearing on the evolution of early crinoids. Palaeontology 62:163173.
Sheffield, S. L., Ausich, W. I., and Sumrall, C. D.. 2017. Late Ordovician (Hirnantian) diploporitan fauna of Anticosti Island, Quebec, Canada: implications for evolutionary and biogeographic patterns. Canadian Journal of Earth Sciences 55:17.
Sinnesael, M., Desrochers, A., Rasmussen, C. M. Ø., Claeys, P., and Vandenbroucke, T. R. A.. 2019. Identifying precession and obliquity cycles in the Ordovician? Geological Society of America, Abstracts with Programs 51. doi: 10.1130/abs/2019AM-341409.
Soper, N. J., Strachan, R. A., Holdsworth, R. E., Gayer, R. A., and Greiling, R. O.. 1992. Sinistral transpression and the Silurian closure of Iapetus. Journal of the Geological Society 149:871880.
Sprinkle, J. 1973. Morphology and evolution of blastozoan echinoderms. Harvard University Museum of Comparative Zoology Special Publication. Museum of Comparative Zoology, Cambridge, Mass.
Stigall, A. L. 2018. How is biodiversity produced? Examining speciation processes during the GOBE. Lethaia 51:165172.
Stigall, A. L., Bauer, J. E., Lam, A. R., Wright, D. F.. 2017. Biotic immigration events, speciation, and the accumulation of biodiversity in the fossil record. Global and Planetary Change 148:242257.
Stigall, A. L., Edwards, C. T., Freeman, R. L., and Rasmussen, C. M. Ø.. 2019. Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event: Darriwilian assembly of early Paleozoic building blocks. Palaeoceanography, Palaeoclimatology, Palaeoecology 530:249270.
Sumrall, C. D. 1997. The role of fossils in the phylogenetic reconstruction of Echinodermata. Paleontological Society Papers 3:267–288.
Sumrall, C. D. 2010. A model for elemental homology for the peristome and ambulacra in blastozoan echinoderms. Pp. 269276in Harris, L. G., Böttger, S. A., Walker, C. W., and Lesser, M. P., eds. Echinoderms: Durham. CRC Press, London.
Sumrall, C. D., and Zamora, S.. 2011. Ordovician edrioasteroids from Morocco: faunal exchanges across the Rheic Ocean. Journal of Systematic Palaeontology 9:425454.
Sumrall, C. D., and Zamora, S.. 2018. New Upper Ordovician edrioasteroids from Morocco. Geological Society of London Special Publication 485:SP485.6.
Sumrall, C. D., Heredia, S., Rodríguez, C. M., and Mestre, A. I.. 2013. The first report of South American edrioasteroids and the paleoecology and ontogeny of rhenopyrgid echinoderms. Acta Palaeontologica Polonica 58:763777.
Sumrall, C. D., Deline, B., Colmenar, J., Sheffield, S. L., Zamora, S.. 2015. New data on late Ordovician (Katian) echinoderms from Sardinia, Italy. Pp. 159162in Zamora, S. and Rábano, I., eds. Progress in echinoderm palaeobiology. Cuademos del Museo Geominero 19. Instituto Geológico y Minero de España, Madrid.
Sutcliffe, O. E., Dowdeswell, J. A., Whittington, R. J., Theron, J. N., and Craig, J.. 2000. Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth's orbit. Geology 28:967970.
Tarver, J. E., Braddy, S. J., and Benton, M. J.. 2007. The effects of sampling bias on Palaeozoic faunas and implications for macroevolutionary studies. Palaeontology 50:177184.
Thompson, T. L., and Satterfield, T. L.. 1975. Stratigraphy and conodont biostratigraphy of strata contiguous to the Ordovician–Silurian boundary in eastern Missouri. Missouri Geological Survey Report of Investigations 57:61108.
Torsvik, T. H., and Cocks, L. R. M.. 2013. New global palaeogeographical reconstructions for the Early Palaeozoic and their generation. Geological Society of London Memoir 38:524.
Trotter, J. A., Williams, I. S., Barnes, C. R., Leécuyer, C., and Nicoll, R. S.. 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 25:550554.
Trubovitz, S., and Stigall, A. L.. 2016. Synchronous diversification of Laurentian and Baltic rhynchonelliform brachiopods: implications for regional versus global triggers of the Great Ordovician Biodiversification Event. Geology 44:743746.
Turner, B. R., Armstrong, H. A., Wilson, C. R., and Makhlouf, I. M.. 2012. High frequency eustatic sea-level changes during the Middle to early Late Ordovician of southern Jordan: indirect evidence for a Darriwilian Ice Age in Gondwana. Sedimentary Geology 251:3448.
Vandenbroucke, T. R. A., Armstrong, H. A., Williams, M., Zalasiewicz, J. A., and Sabbe, K.. 2009. Ground-truthing Late Ordovician climate models using the paleobiogeography of graptolites. Paleoceanography 24:119.
van de Pluijm, B. A., R, R.. van der Too, and Torsvik, T. H.. 1995. Convergence and subduction at the Ordovician margin of Laurentia. Pp. 127136in Hibbard, J. P., van Staal, C. R., and Cawood, P. A., eds. Current perspectives in the Appalachian–Caledonian orogen. Geological Association of Canada Special Paper 41. St. John's, NL, Canada.
Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G.. 2004. The Great Ordovician Biodiversification Event. Columbia University Press, New York.
Wilde, P. 1991. Oceanography in the Ordovician. Pp. 225344in Barnes, C. R. and Williams, S. H., eds. Advances in Ordovician geology. Geological Survey of Canada Paper 90. St. John's, NL, Canada.
Wright, D. F., and Stigall, A. L.. 2013. Geologic drivers of Late Ordovician faunal change in Laurentia: investigating links between tectonics, speciation, and biotic invasions. PLoS ONE 8:e68353.
Wright, D. F., and Toom, U.. 2017. New crinoids from the Baltic region (Estonia): fossil tip-dating phylogenetics constrains the origin and Ordovician–Silurian diversification of the Flexibilia (Echinodermata). Palaeontology 60:893910.
Young, A. L., Brett, C. E., and McLaughlin, P. I.. 2015. Upper Ordovician (Sandbian–Katian) sub-surface stratigraphy of the Cincinnati Region (Ohio, USA): transition into the Sebree Trough. Stratigraphy:12:297305.
Young, S. A., Gill, B. C., Edwards, C. T., Saltzman, M. R., and Leslie, S. A.. 2016. Middle–Late Ordovician (Darriwilian–Sandbian) decoupling of global sulfur and carbon cycles: isotopic evidence from eastern and southern Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology 458:118132.
Zagorevski, A., and Van Staal, C. R.. 2011. The record of Ordovician arc–arc and arc–continent collisions in the Canadian Appalachians during the closure of Iapetus. Pp. 341372in Brown, D. and Ryan, P. D., eds. Arc–continent collision. Frontiers in earth sciences. Springer, Berlin.
Zamora, S., and Smith, A. B.. 2008. A new Middle Cambrian stem-group echinoderm from Spain: paleobiological implications of a highly asymmetric cinctan. Acta Palaeontologica Polonica 53:207221.
Zamora, S., Lefebvre, B., J, B. Àlvaro, J., Clausen, S., Elicki, O., Fatka, O., Jell, P., Kouchinsky, A., Lin, J.-P., Nardin, E., Parsley, R., Rozhnov, S. V., Sprinkle, J., Sumrall, C. D., Vizcaino, D., and Smith, A. B.. 2013. Cambrian echinoderm diversity and palaeobiogeography. Geological Society of London Memoir 38:157171.
Zamora, S., Sumrall, C. D., Zhu, X.-J., Lefebvre, B.. 2016. A new stemmed echinoderm from the Furongian of China and the origin of Glyptocystitida (Blastozoa, Echinodermata). Geological Magazine 154:465475.
Zhang, Q., Buckman, S., Bennett, V. C., and Nutman, A.. 2019. Inception and early evolution of the Ordovician Macquarie Arc of Eastern Gondwana margin: zircon U-Pb-Hf evidence from the Molong Volcanic Belt, Lachlan Orogen. Lithos 326:513528.

Estimating dispersal and evolutionary dynamics in diploporan blastozoans (Echinodermata) across the great Ordovician biodiversification event

  • Adriane R. Lam (a1), Sarah L. Sheffield (a2) and Nicholas J. Matzke (a3)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.