Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-26T05:49:34.613Z Has data issue: false hasContentIssue false

Does evolutionary relatedness predict ecological similarity?

Published online by Cambridge University Press:  06 November 2020

Judith A. Sclafani
Affiliation:
Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania16802, U.S.A. E-mail: jasclafani@gmail.com, mep12@psu.edu
Curtis R. Congreve
Affiliation:
North Carolina State University, Marine, Earth, and Atmospheric Sciences, Raleigh, North Carolina28713, U.S.A. E-mail: crcongre@ncsu.edu
Mark E. Patzkowsky
Affiliation:
Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania16802, U.S.A. E-mail: jasclafani@gmail.com, mep12@psu.edu

Abstract

A fundamental question in paleobiology is whether ecology is correlated with evolutionary history. By combining time-calibrated phylogenetic trees with genus occurrence data through time, we can understand how environmental preferences are distributed on a tree and evaluate support for models of ecological similarity. Exploring parameters that lend support to each evolutionary model will help address questions that lie at the nexus of the evolutionary and ecological sciences. We calculated ecological difference and phylogenetic distance between species pairs for 83 taxa used in recent phylogenetic revisions of the brachiopod order Strophomenida. Ecological difference was calculated as the pairwise distance along gradients of water depth, carbonate, and latitudinal affinity. Phylogenetic distance was calculated as the pairwise branch length between tips of the tree. Our results show no relationship between ecological affinity and phylogeny. Instead results suggest an ecological burst during the initial radiation of the clade. This pattern likely reflects scaling at the largest macroevolutionary and macroecological scales preserved in the fossil record. Hierarchical scaling of ecological and evolutionary processes is complex, but phylogenetic paleoecology is an avenue for better evaluating these questions.

Type
Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.x95x69pfz

References

Literature Cited

Adler, P. B., HilleRisLambers, J., and Levine, J. M.. 2007. A niche for neutrality. Ecology Letters 10:95104.CrossRefGoogle ScholarPubMed
Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle. Pp. 267281 in Petrov, B. N. and Csaki, F., eds. Proceedings of the Second International Symposium on Information Theory. Akademiai Kiado, Budapest.Google Scholar
Alonso, D., Etienne, R. S., and McKane, A. J.. 2006. The merits of neutral theory. Trends in Ecology and Evolution 21:451457.Google ScholarPubMed
Anderson, B. M., Pisani, D., Miller, A. I., and Peterson, K. J.. 2011. The environmental affinities of marine higher taxa and possible biases in their first appearances in the fossil record. Geology 39:971974.CrossRefGoogle Scholar
Armstrong, R. A., and McGehee, R.. 1980. Competitive exclusion. American Naturalist 115:151170.Google Scholar
Bambach, R. K., Knoll, A. H., and Sepkoski, J. J. Jr. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences USA 99:68546859.Google ScholarPubMed
Bapst, D. W. 2012. Paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods in Ecology and Evolution 3:803807.CrossRefGoogle Scholar
Bapst, D. W., Bullock, P. C., Melchin, M. J., Sheets, H. D., and Mitchell, C. E.. 2011. Graptoloid diversity and disparity became decoupled during the Ordovician mass extinction. Proceedings of the National Academy of Sciences USA 109:34283433.Google Scholar
Barnosky, A. D. 2001. Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. Journal of Vertebrate Paleontology 21:172185.Google Scholar
Benton, M. J. 2009. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323:728732.Google ScholarPubMed
Boucot, A. J. 1983. Does evolution take place in an ecological vacuum? Journal Paleontology 57:130.Google Scholar
Brett, C. E., and Baird, G. C.. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. Pp. 285315 in Erwin, D. H. and Anstey, R. L., eds. New approaches to speciation in the fossil record. Columbia University Press, New York.Google Scholar
Bretzky, P. W. 1969. Evolution of Paleozoic benthic marine invertebrate communities. Palaeogeography, Palaeoclimatology, Palaeoecology 6:4559.Google Scholar
Brown, W. L., and Wilson, E. O.. 1956. Character displacement. Systematic Zoology 5:4964.CrossRefGoogle Scholar
Cadotte, M. W. 2007. Concurrent niche and neutral processes in the competition-colonization model of species coexistence. Proceedings of the Royal Society of London B 274:27392744.Google ScholarPubMed
Cadotte, M. W., Carscadden, K., and Mirotchnick, N.. 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 48:10791087.Google Scholar
Cadotte, M. W., Davies, T. J., and Peres-Neto, P. R.. 2017. Why phylogenies do not always predict ecological differences. Ecological Monographs 87:535551.CrossRefGoogle Scholar
Cardillo, M. 2011. Phylogenetic structure of mammal assemblages at larger geographical scales: linking phylogenetic community ecology with macroecology. Philosophical Transactions of the Royal Society of London B 366:25452553.CrossRefGoogle Scholar
Chase, J. M., and Myers, J. A.. 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society of London B 366:23512363.Google Scholar
Chesson, P. L. 1985. Coexistence of competitors in spatially and temporally varying environments: a look at the combined effects of different sorts of variability. Theoretical Population Biology 28:263287.Google Scholar
Chesson, P. L., and Huntley, N.. 1997. The roles of harsh and fluctuation conditions in the dynamics of ecological communities. American Naturalist 150:519553.CrossRefGoogle Scholar
Chesson, P. L., and Warner, R. R.. 1981. Environmental variability promotes coexistence in lottery competitive systems. American Naturalist 117:923943.CrossRefGoogle Scholar
Clark, J. S. 2009. Beyond neutral science. Trends in Ecology and Evolution 24:815.CrossRefGoogle ScholarPubMed
Clark, J. S. 2012. The coherence problem with the unified neutral theory of biodiversity. Trends in Ecology and Evolution 27:198202.Google ScholarPubMed
Cocks, L. R. M., and Rong, J.-Y.. 2000. Strophomenida. Pp. 216348 in Brachiopoda 5 (revised). Part H of Kaesler, R. L., ed. Treatise on invertebrate paleontology. Geological Society of America, Boulder, Colo. and University of Kansas Press, Lawrence.Google Scholar
Congreve, C. R., Krug, A. Z., and Patzkowsky, M. E.. 2015. Phylogenetic revision of the Strophomenida, a diverse and ecologically important Paleozoic brachiopod order. Palaeontology 58:743758.Google Scholar
Congreve, C. R., Falk, A. R., and Lamsdell, J. C.. 2018. Biological hierarchies and the nature of extinction. Biological Reviews 93:811826.Google ScholarPubMed
Congreve, C. R., Krug, A. Z., and Patzkowsky, M. E.. 2019. Evolutionary and biogeographical shifts in response to the Late Ordovician mass extinction. Palaeontology 62:267285.CrossRefGoogle Scholar
Darwin, C. R. 1859. On the origin of species by means of natural selection; or the preservation of favoured races in the struggle for life. John Murray, London.Google Scholar
Dayton, P. K., and Hessler, R. R.. 1972. Role of biological disturbance in maintaining diversity in the deep sea. Deep-Sea Research 19:199208.Google Scholar
De Léon, L. F., Podos, J., Gardezi, T., Herrel, A., and Hendry, A. P.. 2014. Darwin's finches and their diet niches: the sympatric coexistence of imperfect generalists. Journal of Evolutionary Biology 27:10931104.CrossRefGoogle ScholarPubMed
Dunson, W. A., and Travis, J.. 1991. The role of abiotic factors in community organization. American Naturalist 138:10671091.CrossRefGoogle Scholar
Erwin, D. H. 2007. Disparity: morphological pattern and developmental context. Palaeontology 50:5773.Google Scholar
Erwin, D. H. 2015. Novelty and innovation in the history of life. Current Biology 25:R930R940.Google ScholarPubMed
Foote, M. 2006. Substrate affinity and diversity dynamics of Paleozoic marine animals. Paleobiology 32:345366.CrossRefGoogle Scholar
Foote, M. 2014. Environmental controls on geographic range size in marine animal genera. Paleobiology 40:440458.Google Scholar
Foote, M., Ritterbush, K. A., and Miller, A. I.. 2016. Geographic ranges of genera and their constituent species: structure, evolutionary dynamics, and extinction resistance. Paleobiology 42:269288.CrossRefGoogle Scholar
Gause, G. F. 1934. The struggle for existence. Williams and Wilkins, Baltimore, Md.CrossRefGoogle ScholarPubMed
Gerhold, P., Cahill, J. F. Jr., Winter, M., Bartish, I. V., and Prinzing, A.. 2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology 29:600614.CrossRefGoogle Scholar
Godsoe, W. 2010. I can't define the niche but I know it when I see it: a formal link between statistical theory and the ecological niche. Oikos 119:5360.Google Scholar
Goldberg, D. E., and Barton, A. M.. 1992. Patterns and consequences of interspecific competition in natural communities: a review of field experiments with plants. American Naturalist 139:771801.Google Scholar
Grime, J. P. 1973. Competitive exclusion in herbaceous vegetation. Nature 242:344347.Google Scholar
Grinell, J. 1922. The trend of avian populations in California. Science 56:671676.Google Scholar
Hadly, E. A., Spaeth, P. A., and Li, C.. 2009. Niche conservatism above the species level. Proceedings of the National Academy of Sciences USA 106:1970719714.CrossRefGoogle ScholarPubMed
Hardin, G. 1960. The competitive exclusion principle. Science 131:12921298.Google ScholarPubMed
Harper, D. A. T. 2006. The Ordovician biodiversification: setting an agenda for marine life. Palaeogeography, Palaeoclimatology, Palaeoecology 232:148166.Google Scholar
Holland, S. M. 2018. Diversity and tectonics: predictions from neutral theory. Paleobiology 44:219236.CrossRefGoogle Scholar
Holland, S.M. 2019. Estimation, not significance. Paleobiology 45:16.CrossRefGoogle Scholar
Holland, S. M., and Patzkowsky, M. E.. 2004. Ecosystem structure and stability: Middle Upper Ordovician of central Kentucky, USA. Palaios 19:316331.2.0.CO;2>CrossRefGoogle Scholar
Holland, S. M., and Patzkowsky, M. E.. 2007. Gradient ecology of a biotic invasion: biofacies of the type Cincinnatian Series (Upper Ordovician), Cincinnati, Ohio region, USA. Palaios 22:392407.CrossRefGoogle Scholar
Holland, S. M., and Patzkowsky, M. E.. 2009. Stratigraphic architecture of a tropical carbonate platform and its effect on the distribution of fossils: Ordovician Bighorn Dolomite, Wyoming, USA. Palaios 24:303317.CrossRefGoogle Scholar
Holland, S. M., and Sclafani, J. A.. 2015. Phanerozoic diversity and neutral theory. Paleobiology 41:369376.Google Scholar
Holland, S. M., and Zaffos, A.. 2011. Niche conservatism along an onshore-offshore gradient. Paleobiology 37:270286.CrossRefGoogle Scholar
Hopkins, M. J. 2014. The environmental structure of trilobite morphological disparity. Paleobiology 40:352373.CrossRefGoogle Scholar
Hubbell, S. P. 2001. The unified neutral theory of biogeography. Princeton University Press, Princeton, N.J.Google Scholar
Hubbell, S. P. 2005. The neutral theory of biodiversity and biogeography and Stephen Jay Gould. Paleobiology 31:122132.CrossRefGoogle Scholar
Huisman, J., and Weissing, F. J.. 1999. Biodiversity of plankton by species oscillations and chaos. Nature 402:407410.Google Scholar
Hunt, G., and Slater, G.. 2016. Integrating paleontological and phylogenetic approaches to macroevolution. Annual Reviews of Ecology, Evolution, and Systematics 47:189213.CrossRefGoogle Scholar
Hutchinson, G. E. 1958. Concluding remarks. Cold Spring Harbor Symposium. Quantitative Biology 22:415422.Google Scholar
Hutchinson, G. E. 1961. The paradox of the plankton. American Naturalist 95:137145.CrossRefGoogle Scholar
Irving, R. W. 1985. An efficient algorithm for the “stable roommates” problem. Journal of Algorithms 6:577595.CrossRefGoogle Scholar
Jablonski, D. 2005. Evolutionary innovations in the fossil record: the intersection of ecology, development, and macroevolution. Journal of Experimental Zoology 304B:504519.CrossRefGoogle Scholar
Jablonski, D., Roy, K., and Valentine, J. W.. 2006. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102106.CrossRefGoogle ScholarPubMed
Jablonski, D., Belanger, C. L., Berke, S. K., Huang, S., Krug, A. Z., Roy, K., Tomasovych, A., and Valentine, J. W.. 2013. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proceedings of the National Academy of Sciences USA 110:1048710494.CrossRefGoogle ScholarPubMed
Johnson, J. B., and Omland, K. S.. 2004. Model selection in ecology and evolution. Trends in Ecology and Evolution 19:101108.CrossRefGoogle ScholarPubMed
Kammer, T. W., Brett, C. E., Boardman, D. R. II, and Mapes, R. H.. 1986. Ecological stability of the dysaerobic biofacies during the Late Paleozoic. Lethaia 19:109121.CrossRefGoogle Scholar
Kidwell, S. M. 2002. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30:803806.2.0.CO;2>CrossRefGoogle Scholar
Kiessling, W., and Aberhan, M.. 2007. Environmental determinants of marine benthic dynamics through Triassic–Jurassic time. Paleobiology 33:414434.CrossRefGoogle Scholar
Lack, D. 1947. Darwin's finches. Cambridge University Press, Cambridge.Google Scholar
Lamsdell, J. C., Congreve, C. R., Hopkins, M. J., Krug, A. Z., and Patzkowsky, M. E.. 2017. Phylogenetic paleoecology: tree-thinking and ecology in deep time. Trends in Ecology and Evolution 32:452463.Google ScholarPubMed
Leibold, M. A., and McPeek, M. A.. 2006. Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:13991410.Google ScholarPubMed
Ludvigsen, R., and Westrop, S. R.. 1983. Trilobite biofacies of the Cambrian–Ordovician boundary interval in northern North America. Alcheringa: An Australasian Journal of Palaeontology 7:301319.CrossRefGoogle Scholar
MacArthur, R. H. 1958. Population ecology of some warblers of northeastern coniferous forests. Ecology 39:599619.CrossRefGoogle Scholar
MacArthur, R. H., and Wilson, E. O.. 1967. The theory of island biogeography. Monographs in population biology 1. Princeton University Press, Princeton, N.J.Google Scholar
Mayfield, M. M., and Levine, J. M.. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13:10851093.Google ScholarPubMed
Mayr, E. 1942. Systematics and the origin of species. Columbia University Press, New York.Google Scholar
Mayr, E. 1982. Speciation and macroevolution. Evolution 36:11191132.Google ScholarPubMed
McPeek, M. A. 2007. The macroevolutionary consequences of ecological differences among species. Palaeontology 50:111129.CrossRefGoogle Scholar
Morris, P. J. 1996. Testing patterns and causes of faunal stability in the fossil record, with an example from the Pliocene Lusso Beds of Zaire. Palaeogeography, Palaeoclimatology, Palaeoecology 127:313337.Google Scholar
Myers, C. E., Stigall, A. L., and Lieberman, B. S.. 2015. PaleoENM: applying ecological niche modeling to the fossil record. Paleobiology 41: 226244.Google Scholar
Nawrot, R., Scarponi, D., Azzarone, M., Dexter, T.A., Kusnerik, K. M., Wittmer, J. M., Amorosi, A., and Kowalewski, M.. 2018. Stratigraphic signatures of mass extinctions: ecological and sedimentary determinants. Proceedings of the Royal Society of London B 285:20181191.Google ScholarPubMed
Olszewski, T. D., and Erwin, D. H.. 2004. Dynamic response of Permian brachiopod communities to long-term environmental change. Nature 428:738741.Google ScholarPubMed
Paradis, E., and Schliep, K.. 2018. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526528.CrossRefGoogle Scholar
Patzkowsky, M. E. 1995. A hierarchical branching model of evolutionary radiations. Paleobiology 21:440460.Google Scholar
Patzkowsky, M. E. 2017. Origin and evolution of regional biotas: a deep-time perspective. Annual Review of Earth and Planetary Sciences 45:471495.CrossRefGoogle Scholar
Patzkowsky, M. E., and Holland, S. M.. 2016. Biotic invasion, niche stability and the assembly of regional biotas in deep time: comparison between faunal provinces. Paleobiology 42:359379.Google Scholar
Powell, M. G. 2009. The latitudinal diversity gradient of brachiopods over the past 530 million years. Journal of Geology 117:585594.CrossRefGoogle Scholar
Purves, D. W., and Turnbull, L. A.. 2010. Different but not equal: the implausible assumption at the heart of neutral theory. Journal of Animal Ecology 79:12151225.Google ScholarPubMed
Qiao, H., Saupe, E. E., Soberón, J., Peterson, A. T., and Myers, C. E.. 2016. Impacts of niche breadth and dispersal ability on macroevolutionary patterns. American Naturalist 188:149162.CrossRefGoogle ScholarPubMed
Rabosky, D. L. 2013. Diversity-dependence, ecological speciation, and the role of competition in macroevolution. Annual Review of Ecology, Evolution, and Systematics 44:481502.Google Scholar
R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.Google Scholar
Rosindell, J., Hubbell, S. P., and Etienne, R. S.. 2010. The unified neutral theory of biodiversity and biogeography at age ten. Trends in Ecology and Evolution 26:340348.CrossRefGoogle Scholar
Roy, K., Jablonski, D., and Martien, K. K.. 2000. Invariant size-frequency distributions along a latitudinal gradient in marine bivalves. Proceedings of the National Academy of Sciences USA 97:1315013155.Google ScholarPubMed
Saupe, E. E., Hendricks, J. R., Portell, R. W., Dowsett, H. J., Haywood, A., Hunter, S. J., and Lieberman, B. S.. 2014. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proceedings of the Royal Society of London B 281:20141995.Google ScholarPubMed
Schlosser, I. J. 1982. Fish community structure and function along two habitat gradients in a headwater stream. Ecological Monographs 52:395414.CrossRefGoogle Scholar
Schopf, K. M. 1996. Coordinated stasis: biofacies revisited and the conceptual modeling of whole-fauna dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology 127:157175.CrossRefGoogle Scholar
Sclafani, J. A., and Holland, S. M.. 2013. The species-area relationship in the Late Ordovician: a test using neutral theory. Diversity 5:240262.CrossRefGoogle Scholar
Sclafani, J. A., Congreve, C. R., Krug, A. Z., and Patzkowsky, M. E.. 2018. Effects of mass extinction and recovery dynamics on long-term evolutionary trends: a morphological study of Strophomenida (Brachiopoda) across the Late Ordovician mass extinction. Paleobiology 44:603619.Google Scholar
Segre, H., DeMalach, N., Henkin, Z., and Kadmon, R.. 2016. Quantifying competitive exclusion and competitive release in ecological communities: a conceptual framework and a case study. PLoS ONE 11:e0160798.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 1991. A model of onshore-offshore change in faunal diversity. Paleobiology 17:5877.Google Scholar
Sheehan, P. M. 2001. The Late Ordovician mass extinction. Annual Reviews of Earth and Planetary Sciences 29:331364.Google Scholar
Shmida, A., and Ellner, S.. 1984. Coexistence of plant species with similar niches. Vegetatio 58:2955.Google Scholar
Simpson, C., and Harnik, P. G.. 2009. Assessing the role of abundance in marine bivalve extinction over the post-Paleozoic. Paleobiology 35:631647.CrossRefGoogle Scholar
Smith, F. A., Brown, J. H., Haskell, J. P., Lyons, S. K., Alroy, J., Charnov, E. L., Dayan, T., Enquist, B. J., Ernest, S. K. M., Hadly, E. A., Jablonski, D., Jones, K. E., Kaufman, D. M., Marquet, P. A., Maurer, B. A., Niklas, K. J., Porter, W. P., Roy, K., Tiffney, B., and Willig, M. R.. 2004. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. American Naturalist 163:672691.Google ScholarPubMed
Soberon, J., and Peterson, A. T.. 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2:110.CrossRefGoogle Scholar
Stanley, S. M. 2008. Predation defeats competition on the seafloor. Paleobiology 34:121.CrossRefGoogle Scholar
Thompson, J. R., and Bottjer, D. J.. 2019. Quantitative analysis of substrate preference in Carboniferous stem group echinoids. Palaeogeography, Palaeoclimatology, Palaeoecology 513:3551.CrossRefGoogle Scholar
Tilman, D. 1997. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78:8192.CrossRefGoogle Scholar
Tilman, D. 2004. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences USA 101:1085410861.CrossRefGoogle ScholarPubMed
Tilman, D., Kilham, S. S., and Kilham, P.. 1982. Phytoplankton community ecology: the role of limiting nutrients. Annual Review of Ecology and Systematics 13:349372.CrossRefGoogle Scholar
Tomasovych, A., and Kidwell, S. M.. 2010. Predicting the effects of increasing temporal scale on species composition, diversity, and rank abundance distributions. Paleobiology 36:672695.Google Scholar
Valentine, J. W., Jablonski, D., Krug, A. Z., and Roy, K.. 2008. Incumbency, diversity, and latitudinal gradients. Paleobiology 34:169178.Google Scholar
Van Valen, L. 1973. A new evolutionary law. Evolutionary Theory 1:130.Google Scholar
Van Valen, L. M. 1985. A theory of origination and extinction. Evolutionary Theory 7:133142.Google Scholar
Violle, C., Nemergut, D. R., Pu, Z., and Jiang, L.. 2011. Phylogenetic limiting similarity and competitive exclusion. Ecology Letters 14:782787.CrossRefGoogle ScholarPubMed
Volterra, V. 1926. Fluctuation in the abundance of a species considered mathematically. Nature 118:558560.Google Scholar
Vrba, E. S., and Eldredge, N.. 1984. Individuals, hierarchies and processes: towards a more complete evolutionary theory. Paleobiology 10:146171.CrossRefGoogle Scholar
Walker, B. H. 1992. Biodiversity and ecological redundancy. Conservation Biology 6:1823.CrossRefGoogle Scholar
Wang, S., Chen, A., Fang, J., and Pacala, S. W.. 2013. Speciation rates decline through time in individual-based models of speciation and extinction. American Naturalist 182:E83E93.CrossRefGoogle ScholarPubMed
Warren, D. L., and Seifert, S. N.. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications 21:335343.CrossRefGoogle ScholarPubMed
Webb, C. O., Ackerly, D. D., McPeek, M. A., and Donoghue, M. J.. 2002. Phylogenies and community ecology. Annual Reviews of Ecological Systems. 33:475505.CrossRefGoogle Scholar
Whittaker, R. H., Levin, S. A., and Root, R. B.. 1973. Niche, habitat, and ecotope. American Naturalist 107:321338.CrossRefGoogle Scholar
Wilson, J. B. 1999. Guilds, functional types, and ecological groups. Oikos 86:507522.Google Scholar
Wilson, R. P. 2010. Resource partitioning and niche hyper-volume overlap in free-living Pygoscelid penguins. Functional Ecology 24: 646657.CrossRefGoogle Scholar
Wood, R., and Erwin, D. H.. 2017. Innovation not recovery: dynamic redox promotes metazoan radiations. Biological Reviews 93:863873.CrossRefGoogle Scholar
Ziegler, A. M. 1965. Silurian marine communities and their environmental significance. Nature 207:270272.Google Scholar
Ziegler, A. M., Cocks, L. R. M., and Bambach, R. K.. 1968. The composition and structure of lower Silurian marine communities. Lethaia 1:127.CrossRefGoogle Scholar