Skip to main content Accessibility help
×
Home

Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene

  • Julio Aguirre (a1), Robert Riding (a1) and Juan C. Braga (a2)

Abstract

Data from a comprehensive literature survey for the first time provide stage-level resolution of Early Cretaceous through Pleistocene species diversity for nongeniculate coralline algae. Distributions of a total of 655 species in 23 genera were compiled from 222 publications. These represent three family-subfamily groupings each with distinctive present-day distributions: (1) Sporolithaceae, low latitude, mainly deep water; (2) Melobesioid corallinaceans, high latitude, shallow water, to low latitude, deep water; (3) Lithophylloid/mastophoroid corallinaceans, mid- to low latitude, shallow water.

Raw data show overall Early Cretaceous-early Miocene increase to 245 species in the Aquitanian, followed by collapse to only 43 species in the late Pliocene. Rarefaction analysis confirms the pattern of increase but suggests that scarcity of publications exaggerates Neogene decline, which was actually relatively slight.

Throughout the history of coralline species, species richness broadly correlates with published global paleotemperatures based on benthic foraminifer δ18O values. The warm-water Sporolithaceae were most species-abundant during the Cretaceous, but they declined and were rapidly overtaken by the Corallinaceae as Cenozoic temperatures declined.

Trends within the Corallinaceae during the Cenozoic appear to reflect environmental change and disturbance. Cool- and deep-water melobesioids rapidly expanded during the latest Cretaceous and Paleocene. Warmer-water lithophylloid/mastophoroid species increased slowly during the same period but more quickly in the early Oligocene, possibly reflecting habitat partitioning as climatic belts differentiated and scleractinian reef development expanded near the Eocene/Oligocene boundary. Melobesioids abruptly declined in the late Pliocene-Pleistocene, while lithophylloid/mastophoroids increased again. Possibly, onset of glaciation in the Northern Hemisphere (~2.4 Ma) sustained or accentuated latitudinal differentiation and global climatic deterioration, disrupting high-latitude melobesioid habitats. Simultaneously, this could have caused moderate environmental disturbance in mid- to low-latitude ecosystems, promoting diversification of lithophylloids/mastophoroids through the “fission effect.”

Extinction events that eliminated >20% of coralline species were most severe (58–67% of species) during the Late Cretaceous and late Miocene-Pliocene. Each extinction was followed by substantial episodes of origination, particularly in the Danian and Pleistocene.

Copyright

References

Hide All
Adey, W. H. 1986. Coralline algae as indicators of sea-level. Pp. 229280in van de Plassche, O., ed. Sea-level research: a manual for the collection and evaluation of data. Free University of Amsterdam, Amsterdam.
Adey, W. H., and Macintyre, I. G. 1973. Crustose coralline algae: a re-evaluation in the geological sciences. Geological Society of America Bulletin 84:883904.
Adey, W. H., and McKibbin, D. 1970. Studies on the maerl species Phymatolithon calcareum (Pallas) nov. comb. and Lithothamnium corallioides Crouan in the Ria de Vigo. Botanica Marina 13:100106.
Adey, W. H., Townsend, R. A., and Boykins, W. T. 1982. The crustose coralline algae (Rhodophyta: Corallinaceae) of the Hawaiian Islands. Smithsonian Contributions to Marine Sciences 15:174.
Aguirre, J., and Braga, J. C. 1998. Redescription of Lemoine's (1939) types of coralline algal species from Algeria. Palaeontology 41:489507.
Aguirre, J., Braga, J. C., and Piller, W. 1996. Reassessment of Palaeothamnium Conti, 1946 (Corallinaceae, Rhodophyta). Review of Palaeobotany and Palynology 94:19.
Aguirre, J., Riding, R., and Braga, J. C. 1997. Extinction and recovery of benthic marine calcified algae at the Cretaceous-Tertiary boundary. European Union of Geosciences meeting, Strasbourg, France, Abstract Supplement No. 1, Terra Nova 9:280.
Aguirre, J., Riding, R., and Braga, J. C. 2000. Late Cretaceous incident light reduction: evidence from benthic algae. Lethaia 33 (in press).
Arias, C., Masse, J. P., and Vilas, L. 1995. Hauterivian shallow marine calcareous biogenic mounds: S. E. Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 119:317.
Bailey, J. C. 1999. Phylogenetic position of Lithophyllum incrustans and Titanoderma pustulatum (Corallinaceae, Rhodophyta) based on 18S rRNA gene sequence analysis, with a revised classification of the Lithophylloideae. Phycologia 38:208216.
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.
Barry, G. C., and Woelkerling, W. J. 1995. Non-geniculate species of Corallinaceae (Corallinales, Rhodophyta) in Shark Bay, Western Australia: biodiversity, salinity tolerances and biogeographic affinities. Botanica Marina 38:135149.
Benton, M. J. 1995. Diversification and extinction in the history of life. Science 268:5258.
Berggren, W. A., Kent, D. V., Swisher, C. C. III, and Aubry, M. P. 1995. A revised Cenozoic geochronology and chronostratigraphy. In Berggren, W. A., Kent, D. V., Aubry, M. P., and Hardenbol, J., eds. Geochronology, time scales and global stratigraphic correlation. SEPM Special Publication 54:129212.
Bosence, D. W. J. 1983. The occurrence and ecology of recent rhodoliths (rhodoids, rhodolites). Pp. 225242in Peryt, T. M., ed. Coated grains. Springer, Berlin.
Bosence, D. W. J. 1991. Coralline algae: mineralization, taxonomy, and palaeoecology. Pp. 98113in Riding, R., ed. Calcareous algae and stromatolites. Springer, Berlin.
Bottjer, D. J., and Jablonski, D. 1988. Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. Palaios 3:540560.
Braga, J. C., and Aguirre, J. 1995. Taxonomy of fossil coralline algal species: Neogene Lithophylloideae (Rhodophyta, Corallinaceae) from southern Spain. Review of Palaeobotany and Palynology 86:265285.
Braga, J. C., Bosence, D. W. J., and Steneck, R. S. 1993. New anatomical characters in fossil coralline algae and their taxonomic implications. Palaeontology 36:535547.
Brooke, C., and Riding, R. 1998. Ordovician and Silurian coralline red algae. Lethaia 31:185195.
Buzas, M. A. 1990. Another look at confidence limits for species proportions. Journal of Paleontology 64:842843.
Chuvashov, B. I. 1971. A new genus of Late Paleozoic red algae. Paleontological Journal 5:216220.
Coates, A. G., and Jackson, J. B. C. 1985. Morphological themes in the evolution of clonal and aclonal marine invertebrates. Pp. 67106in Jackson, J. B. C., Buss, L. W., and Cook, R. E., eds. Population biology and evolution of clonal organisms. Yale University Press, New Haven, Conn.
Corfield, R. M. 1987. Patterns of evolution in Palaeocene and Eocene planktonic foraminifera. Pp. 93110in Hart, M. B., ed. Micropalaeontology of carbonate environments. Ellis Horwood, Chichester, England.
Culver, S. L., Buzas, M. A., and Collins, L. S. 1987. On the value of taxonomic standardization in evolutionary studies. Paleobiology 13:169176.
Dragastan, O. 1971. New algae in the upper Jurassic and lower Cretaceous in the Bicaz Valley East Carpathians (Romania). Revista Española de Micropaleontología 3:155192.
Elliott, G. F. 1959. New calcareous algae from the Cretaceous of Iraq. Révue de Micropaléontologie 1:217222.
Endo, R. 1961. Phylogenetic relationships among the calcareous algae. Science Reports of Saitama University (Biology and Earth Sciences), Endo Commemoration Vol.
Flessa, K. W. 1990. The “facts” of mass extinctions. Pp. 17in Sharpton, and Ward, 1990.
Fravega, P., Piazza, M., and Vannucci, G. 1989. Archaeolithothamnium Rothpletz. Indicatore ecologico-stratigrafico? Atti 3° Simposio di Ecologia e paleoecologia delle comunità bentoniche 729743.
Gradstein, F. M., Agterberg, F. P., Ogg, J. G., Handerbol, J., Veen, P. V., Thierry, J., and Huang, Z. 1995. A Triassic, Jurassic and Cretaceous time scale. In Berggren, W. A., Kent, D. V., Aubry, M. P., and Hardenbol, J., eds. Geochronology, time scales and global stratigraphic correlation. SEPM Special Publication 54:95126.
Haq, B. V., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235:11561167.
Harvey, A. S., and Woelkerling, W. J. 1995. An account of Austrolithon intumescens gen. et sp. nov. and Boreolithon van-heurckii (Heydrich) gen. et comb. nov. (Austrolithoideae subfam. nov., Corallinaceae, Rhodophyta). Phycologia 34:362382.
Hurlbert, S. H. 1971. The non-concept of species diversity: a critique and alternative parameters. Ecology 52:577586.
Ishijima, W. 1954. Cenozoic coralline algae from the western Pacific. Privately published, Tokyo.
Jablonski, D., and Bottjer, D. J. 1990. Onshore-offshore trends in marine invertebrate evolution. Pp. 2175in Ross, R. M. and Allmon, W. D., eds. Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago.
Johnson, J. H. 1957. Geology of Saipan, Mariana Islands. Calcareous algae. U.S. Geological Survey Professional Paper 280:209246.
Johnson, J. H. 1961. Fossil algae from Eniwetok, Funafuti, and Kita-Daito-Jima. U.S. Geological Survey Professional Paper 260-Z:907950.
Johnson, J. H. 1962. The algal genus Lithothamnium and its fossil representatives. Colorado School of Mines Quarterly 57:1111.
Johnson, J. H. 1963. The algal genus Archaeolithothamnium and its fossil representatives. Journal of Paleontology 37:175211.
Johnson, J. H. 1966. Tertiary red algae from Borneo. Bulletin of the British Museum (Natural History) Geology 2:257280.
Johnson, J. H., and Adey, W. H. 1965. Studies of Lithophyllum and related algal genera. Colorado School of Mines Quarterly 60:1105.
Lemoine, M. P. 1970. Les algues floridées calcaires du Crétacé du sud de la France. Archives du Muséum Nationale d'Histoire Naturelle, Paris, série 7, 10:129240.
Lemoine, M. P. 1977. Les difficultés de la philogénie chez les algues Corallinacées. Bulletin de la Societé Géologique du France 19:13191325.
Littler, M. M., Littler, D. S., Blair, S. M., and Norris, J. N. 1986. Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance, and primary productivity. Deep-Sea Research 33:881892.
Maslov, V. P. 1956. Iskopaemye izvestkovye vodorosli SSSR. [Fossil calcareous algae of the U.S.S.R.] Trudy Instituta Geologicheskikh Nauk AN SSSR 160:1302. Nauka, Moscow. [In Russian.]
Minnery, G. A., Rezak, R., and Bright, T. J. 1985. Depth zonation and growth form of crustose coralline algae: Flower Garden Banks, Northwestern Gulf of Mexico. Pp. 237246in Toomey, D. F. and Nitecki, M. H., eds. Paleoalgology: contemporary research and applications. Springer, Berlin.
Moussavian, E. 1991. New aspects of the phylogeny of coralline red algae (Rhodophyta): Cretaceous-Recent. Fifth international symposium on fossil algae, Capri, Italy, Abstracts, pp. 7273.
Moussavian, E., Salas, R., and Martin Closas, C. 1993. Evidence of modern red algae (Corallinaceae, Peyssonneliaceae) in the pre-Barremian Cretaceous. Alpine algae, 1993 meeting, Munich, Abstracts.
Perrin, C., Bosence, D. W. J., and Rosen, B. 1995. Quantitative approaches to palaeozonation and palaeobathymetry of corals and coralline algae in Cenozoic reefs. In Bosence, D. W. J. and Allison, P. A., eds. Marine palaeoenvironmental analysis from fossils. Geological Society Special Publication 83:181229. Geological Society of London.
Poignant, A. F. 1974. Les algues calcaires fossiles: leur intérêt stratigraphique. Newsletter Stratigraphy 3:181192.
Poignant, A. F. 1978. Les algues rouges crétacées: relations mer Boréale-Téthys. In Aspekte der Kreide Europas. International Union of Geological Sciences A 6:273278.
Poignant, A. F. 1981. Sur des formes nouvelles d'algues rouges crétacées. Cretaceous Research 2:187195.
Poignant, A. F., and Lobitzer, H. 1982. Les algues de l'Albien supérieur du Nigéria. Cahiers Micropaléontologie 2:3540.
Poncet, J., and Morzadec, P. 1993. Lasneria globosa gen. et sp. nov., Corallinaceae ancestrale Dévonien inférieur du Massif armoricain, France. Review of Palaeobotany and Palynology 77:263272.
Raup, D. M. 1976a. Species diversity in the Phanerozoic: a tabulation. Paleobiology 2:279288.
Raup, D. M. 1976b. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.
Raup, D. M. 1991. The future of analytical paleobiology. In Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleontology 4:207216. Paleontological Society, Knoxville, Tenn.
Raup, D. M., and Boyajian, G. E. 1988. Patterns of generic extinctions in the fossil record. Paleobiology 14:109125.
Raup, D. M., and Sepkoski, J. J. Jr. 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences USA 81:801805.
Raup, D. M., and Sepkoski, J. J. Jr. 1986. Periodic extinction of families and genera. Science 231:833836.
Riding, R. 1993. Calcareous algae. Pp. 7881in Kearey, P., ed. The encyclopedia of the solid Earth sciences. Blackwell Scientific, Oxford.
Riding, R., Cope, J. C. W., and Taylor, P. D. 1998. A coralline-like red alga from the Lower Ordovician of Wales. Palaeontology 41:10691076.
Romanes, M. F. 1916. Note on an algal limestone from Angola. Transactions of the Royal Society of Edinburgh 16:581584.
Savin, S. M. 1977. The history of the Earth's surface temperature during the last 100 million years. Annual Review of Earth and Planetary Sciences 5:319355.
Sepkoski, J. J. Jr. 1986. Phanerozoic overview of mass extinction. Pp. 277296in Raup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin.
Sepkoski, J. J. Jr. 1989. Periodicity in extinction and problem of catastrophism in the history of life. Journal of the Geological Society of London 146:719.
Sepkoski, J. J. Jr. 1990. The taxonomic structure of periodic extinction. Pp. 3344in Sharpton, and Ward, 1990.
Sepkoski, J. J. Jr., and Koch, C. F. 1996. Evaluating paleontologic data relating to bio-events. Pp. 2134in Walliser, O. H., ed. Global events and event stratigraphy in the Phanerozoic. Springer, Berlin.
Shackleton, N. J., Backman, J., Zimmerman, H., Kent, D. V., Hall, M. A., Roberts, D. G., Schnitker, D., Baldauf, J. G., Desprairies, A., Homrighausen, R., Huddlestun, P., Keene, J. B., Kaltenback, A. J., Kumsiek, K. A. O., Morton, A. C., Murray, J. W., and Westberg-Smith, J. 1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307:620623.
Sharpton, V. L., and Ward, P. D., eds. 1990. Global catastrophes in Earth history: an interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America Special Paper 247.
Sheehan, P. M. 1977. Species diversity in the Phanerozoic: a reflection of labor by systematists? Paleobiology 3:325328.
Sheehan, P. M. 1985. Reefs are not so different. They follow the evolutionary pattern of level-bottom communities. Geology 13:4649.
Smith, A. B. 1994. Systematics and the fossil record: documenting evolutionary patterns. Blackwell Scientific, Oxford.
Stanley, S. M. 1979. Macroevolution. W. H. Freeman, San Francisco.
Stanley, S. M. 1986. Population size, extinction, and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12:89110.
Stanley, S. M. 1990. The general correlation between rate of speciation and rate of extinction: fortuitous causal linkages. Pp. 103127in Ross, R. M. and Allmon, W. D., eds. Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago.
Steneck, R. S. 1983. Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9:4461.
Steneck, R. S. 1985. Adaptations of crustose coralline algae to herbivory: patterns in space and time. Pp. 352366in Toomey, D. F. and Nitecki, M. H., eds. Paleoalgology: contemporary research and applications. Springer, Berlin.
Steneck, R. S., and Adey, W. H. 1976. The role of environment in control of morphology in Lithophyllum congestum, a Caribbean algal ridge builder. Botanica Marina 19:197215.
Thomas, E. 1990. Late Cretaceous-early Eocene mass extinctions in the deep sea. Pp. 481495in Sharpton, and Ward, 1990.
Thornton, S. E., Pilkey, O. H., and Lynts, G. W. 1978. A lagoonal crustose coralline algal micro-ridge: Bihivet El Bibane, Tunisia. Journal of Sedimentary Petrology 48:743750.
Townsend, R. A., Chamberlain, Y. M., and Keats, D. W. 1994. Heydrichia woelkerlingii gen. et sp. nov., a newly discovered nongeniculate red alga (Corallinales, Rhodophyta) from Cape Province, South Africa. Phycologia 33:177186.
Townsend, R. A., Woelkerling, W. J., Harvey, A. S., and Borowitzka, M. 1995. An account of the red algal genus Sporolithon (Sporolithaceae, Corallinales) in southern Australia. Australian Systematic Botany 8:85121.
Verheij, E. 1993. The genus Sporolithon (Sporolithaceae fam. nov., Corallinales, Rhodophyta) from the Spermonde Archipelago, Indonesia. Phycologia 32:184196.
Woelkerling, W. J. 1988. The coralline red algae: an analysis of the genera and subfamilies of nongeniculate Corallinaceae. Oxford University Press, Oxford.
Womersley, H. B. S. 1996. The marine benthic flora of southern Australia, Rhodophyta, Part IIIB. Flora of Australia supplementary series 5. Australian Biological Resources Study, Canberra.
Wray, J. L. 1977a. Late Paleozoic calcareous red algae. Pp. 167176in Flügel, E., ed. Fossil algae, recent results and developments. Springer, Berlin.
Wray, J. L. 1977b. Calcareous algae. Elsevier, Amsterdam.
Zachos, J. C., Quinn, T. M., and Salamy, K. A. 1996. High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene–Oligocene climate transition. Paleoceanography 11:251266.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed