Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-23T02:30:50.511Z Has data issue: false hasContentIssue false

Contrasting the ecological and taxonomic consequences of extinction

Published online by Cambridge University Press:  24 June 2013

Max Christie
Affiliation:
Department of Geology, The University of Georgia, Athens, Georgia 30602-2501, U.S.A. E-mail: mchristie09@gmail.com
Steven M. Holland
Affiliation:
Department of Geology, The University of Georgia, Athens, Georgia 30602-2501, U.S.A. E-mail: mchristie09@gmail.com
Andrew M. Bush
Affiliation:
Department of Ecology and Evolutionary Biology and Center for Integrative Geosciences, 75 North Eagleville Road, University of Connecticut, Storrs, Connecticut 06269-3043, U.S.A. Present address: Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania 16803, U.S.A.

Abstract

Extinction in the fossil record is most often measured by the percentage of taxa (species, genera, families, etc.) that go extinct in a certain time interval. This is a measure of taxonomic loss, but previous work has indicated that taxonomic loss may be decoupled from the ecological effects of an extinction. To understand the role extinction plays in ecological change, extinction should also be measured in terms of loss of functional diversity. This study tests whether ecological changes increase correspondingly with taxonomic changes during the Late Ordovician M4/M5 extinction, the Ordovician/Silurian mass extinction, and the Late Devonian mass extinction. All three extinctions are evaluated with regional data sets from the eastern United States. Ecological effects are measured by classifying organisms into ecological lifestyles, which are groups based on ecological function rather than evolutionary history. The taxonomic and ecological effects of each extinction are evaluated with additive diversity partitioning, detrended correspondence analysis, and relative abundance distributions. Although the largest taxonomic changes occur in the Ordovician/Silurian extinction, the largest ecological changes occur in the Late Devonian extinction. These results suggest that the ecological consequences of extinction need to be considered in addition to the taxonomic effects of extinction.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J. 2008. Dynamics of origination and extinction in the marine fossil record. Proceedings of the National Academy of Sciences USA 105:1153611542.CrossRefGoogle ScholarPubMed
Baird, G. C., and Brett, C. E. 2003. Shelf and off-shelf deposits of the Tully Formation in New York and Pennsylvania: faunal incursions, eustasy, and tectonics. Courier Forschungsinstitut Senckenberg 242:141156.Google Scholar
Baird, G. C., and Brett, C. E. 2008. Late Givetian Taghanic bioevents in New York State: new discoveries and questions. Bulletin of Geosciences 83:357375.CrossRefGoogle Scholar
Bambach, R. 1983. Ecospace utilization and lifestyles in marine communities through the Phanerozoic. Pp. 719746inTevesz, M. J. S. and McCall, P. L., eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.CrossRefGoogle Scholar
Bambach, R. K., Knoll, A. H., and Wang, S. C. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522542.2.0.CO;2>CrossRefGoogle Scholar
Benton, M. J. 1995. Diversification and extinction in the history of life. Science 268:5258.CrossRefGoogle ScholarPubMed
Berry, W. B. N., and Boucot, A. J. 1973. Glacio-eustatic control of Late Ordovician–Early Silurian platform sedimentation and faunal changes. Geological Society of America Bulletin 84:275284.2.0.CO;2>CrossRefGoogle Scholar
Bottjer, D. J., and Ausich, W. I. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400420.CrossRefGoogle Scholar
Boucot, A. J. 1975. Evolution and extinction rate controls. Elsevier, Amsterdam.Google Scholar
Boucot, A. J. 1983. Does evolution take place in an ecological vacuum? Journal of Paleontology 57:130.Google Scholar
Brenchley, P. J., Marshall, J. D., and Carden, G. A. 1994. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology 22:295298.2.3.CO;2>CrossRefGoogle Scholar
Brenchley, P. J., Carden, G. A., Hints, L., Kaljo, D., Marshall, J. D., Martma, T., Meidla, T., and Nõlvak, J. 2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences: constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation. Geological Society of America Bulletin 115:89104.2.0.CO;2>CrossRefGoogle Scholar
Brett, C. E., and Baird, G. C. 1995. Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. Pp. 285315inErwin, D. H. and Anstey, R. L., eds. New approaches to speciation in the fossil record. Columbia University Press New York.Google Scholar
Brice, D., Carls, P., Cocks, R. M., Copper, P., Garcia-Alcalde, J. L., Godefroid, J., and Rachebouef, P. R. 2000. Brachiopods. InBultynck, P., ed. Subcommission on Devonian stratigraphy: fossil groups important for boundary definition. Courier Forschungsinstitut Senckenberg 220:6586.Google Scholar
Bush, A. M., and Bambach, R. K. 2011. Paleoecologic megatrends in marine metazoan. Annual Review of Earth and Planetary Sciences 39:241269.CrossRefGoogle Scholar
Bush, A. M., Bambach, R. K., and Daley, G. M. 2007. Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology 33:7697.CrossRefGoogle Scholar
Copper, P. 2002. Reef development at the Frasnian/Famennian mass extinction boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 181:2765.CrossRefGoogle Scholar
Droser, M. L., Bottjer, D. J., and Sheehan, P. M. 1997. Evaluating the ecological architecture of major events in the Phanerozoic history of marine invertebrate life. Geology 25:167170.2.3.CO;2>CrossRefGoogle Scholar
Droser, M. L., Bottjer, D. J., Sheehan, P. M., and McGhee, G. R. 2000. Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology 28:675678.2.0.CO;2>CrossRefGoogle Scholar
Erwin, D. H. 1998. The end and the beginning: recoveries from mass extinctions. Trends in Ecology and Evolution 13:344349.CrossRefGoogle ScholarPubMed
Finnegan, S., Bergmann, K., Eiler, J. M., Jones, D. S., Fike, D. A., Eisenman, I., Hughes, N. C., Tripati, A. K., and Fischer, W. W. 2011. The magnitude and duration of Late Ordovician–Early Silurian glaciation. Science 331:903906.CrossRefGoogle ScholarPubMed
Foote, M. 2001. Inferring temporal patterns of preservation, origination, and extinction from taxonomic survivorship analysis. Paleobiology 27:602630.2.0.CO;2>CrossRefGoogle Scholar
Foote, M. 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Geology 111:125148.CrossRefGoogle Scholar
Gering, J. C., Crist, T. O., and Veech, J. A. 2003. Additive partitioning of species diversity across multiple spatial scales: Implications for regional conservation of biodiversity. Conservation Biology 17:488499.CrossRefGoogle Scholar
Gower, J. C. 1975. Generalized Procrustes analysis. Psychometrika 40:3351.CrossRefGoogle Scholar
Hallam, A., and Wignall, P. B. 1997. Mass extinctions and their aftermath. Oxford University Press, Oxford.CrossRefGoogle Scholar
Hatch, J. R., Jacobson, S. R., Witzke, B. J., Risatti, J. B., Anders, D. E., Watney, W. L., Newell, K. D., and Vuletich, A. K. 1987. Possible late Middle Ordovician organic carbon isotope excursion: evidence from Ordovician oils and hydrocarbon source rocks, mid-continent and east-central United States. American Association of Petroleum Geologists Bulletin 71:13421354.Google Scholar
Hill, M. O., and Gauch, H. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:4758.CrossRefGoogle Scholar
Holland, S. M. 2010. Additive diversity partitioning in palaeobiology: revisiting Sepkoski's question. Palaeontology 53:12371254.CrossRefGoogle Scholar
Holland, S. M., and Patzkowsky, M. E. 1996. Sequence stratigraphy and long-term paleoceanographic change in the Middle and Upper Ordovician of the eastern United States. InWitzke, B. J., Ludvigson, G. A., and Day, J. E., eds. Paleozoic sequence stratigraphy: views from the North American Craton. Geological Society of America Special Paper 306:117129.Google Scholar
Holland, S. M., and Patzkowsky, M. E. 1997. Distal orogenic effects on peripheral bulge sedimentation: Middle and Upper Ordovician of the Nashville Dome. Journal of Sedimentary Research 67:250263.Google Scholar
Holland, S. M., and Patzkowsky, M. E. 2004. Ecosystem structure and stability: Middle Upper Ordovician of central Kentucky, USA. Palaios 19:316331.2.0.CO;2>CrossRefGoogle Scholar
Holland, S. M., and Patzkowsky, M. E. 2007. Gradient ecology of a biotic invasion: biofacies of the type Cincinnatian Series (Upper Ordovician), Cincinnati, Ohio region. Palaios 22:392407.CrossRefGoogle Scholar
House, M. R. 2002. Strength, timing, setting and cause of mid-Palaeozoic extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 181:525.CrossRefGoogle Scholar
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.CrossRefGoogle ScholarPubMed
Jablonski, D. 1991. Extinctions: a paleontological perspective. Science 253:754757.CrossRefGoogle ScholarPubMed
Jackson, J. B. C., and Erwin, D. H. 2006. What can we learn about ecology and evolution from the fossil record? Trends in Ecology and Evolution 21:322328.CrossRefGoogle ScholarPubMed
Jackson, D. A., and Somers, K. M. 1991. Putting things in order: the ups and downs of detrended correspondence analysis. American Naturalist 137:704712.CrossRefGoogle Scholar
Joachimski, M. M., and Buggisch, W. 1993. Anoxic events in the late Frasnian—causes of the Frasnian-Famennian faunal crisis? Geology 21:675678.2.3.CO;2>CrossRefGoogle Scholar
Joachimski, M. M., and Buggisch, W. 2002. Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology 30:711714.2.0.CO;2>CrossRefGoogle Scholar
Johnson, J. G. 1970. Taghanic onlap and the end of North American Devonian provinciality. Geological Society of America Bulletin 81:20772106.CrossRefGoogle Scholar
Johnson, J. G. 1974. Extinction of perched faunas. Geology 2:479482.2.0.CO;2>CrossRefGoogle Scholar
Kenkel, N., and Orloci, L. 1986. Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67:919928.CrossRefGoogle Scholar
Lande, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76:513.CrossRefGoogle Scholar
Layou, K. M. 2009. Ecological restructuring after extinction: the Late Ordovician (Mohawkian) of the eastern United States. Palaios 24:118130.CrossRefGoogle Scholar
McGhee, G. R. 1996. The late Devonian mass extinction: the Frasnian/Famennian crisis. Columbia University Press, New York.Google Scholar
McGhee, G. R., Sheehan, P. M., Bottjer, D. J., and Droser, M. L. 2004. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology 211:289297.CrossRefGoogle Scholar
Minchin, P. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Plant Ecology 69:89107.CrossRefGoogle Scholar
Novack-Gottshall, P. M. 2007. Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology 33:273294.CrossRefGoogle Scholar
Patzkowsky, M. E., and Holland, S. M. 1993. Biotic response to a Middle Ordovician paleoceanographic event in eastern North America. Geology 21:619622.2.3.CO;2>CrossRefGoogle Scholar
Patzkowsky, M. E., and Holland, S. M. 1996. Extinction, invasion, and sequence stratigraphy: patterns of faunal change in the Middle and Upper Ordovician of the eastern United States. InWitzke, B. J., Ludvigsen, G. A., and Day, J. E., eds. Paleozoic sequence stratigraphy: views from the North American Craton. Geological Society of America Special Paper 306:131142.Google Scholar
Patzkowsky, M. E., and Holland, S. M. 1997. Patterns of turnover in Middle and Upper Ordovician brachiopods of the eastern United States : a test of coordinated stasis. Paleobiology 23:420443.CrossRefGoogle Scholar
Patzkowsky, M. E., and Holland, S. M. 2007. Diversity partitioning of a Late Ordovician marine biotic invasion: controls on diversity in regional ecosystems. Paleobiology 33:295309.CrossRefGoogle Scholar
Patzkowsky, M. E., and Holland, S. M. 2012. Stratigraphic paleobiology: understanding the distribution of fossil taxa in time and space. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Patzkowsky, M. E., Slupik, L. M., Arthur, M. A., Pancost, R. D., and Freeman, K. H. 1997. Late Middle Ordovician environmental change and extinction: harbinger of the Late Ordovician or continuation of Cambrian patterns? Geology 25:911914.2.3.CO;2>CrossRefGoogle Scholar
Peet, R. K., Knox, R. G., Case, J. S., and Allen, R. 1988. Putting things in order: the advantages of detrended correspondence analysis. American Naturalist 131:924934.CrossRefGoogle Scholar
Pillar, V. D. P. 1999. The bootstrapped ordination re-examined. Journal of Vegetation Science 10:895902.CrossRefGoogle Scholar
Plotnick, R. E., and McKinney, M. L. 1993. Ecosystem organization and extinction dynamics. Palaios 8:202212.CrossRefGoogle Scholar
R Core Development Team. 2005. R: a language and environment for statistical computing. Version 2.10, Foundation for Statistical Computing, Vienna, http://www.r-project.org/. Checked January 2013.Google Scholar
Racki, G. 2005. Toward understanding Late Devonian global events: few answers, many questions. InOver, J., Morrow, J., and Wignall, P. B., eds. Understanding Late Devonian and Permian-Triassic biotic and climatic events: towards and integrated approach. Developments in Paleontology and Stratigraphy 20:199224.Google Scholar
Railsback, L. B., Holland, S. M., Hunter, D. M., Jordan, E. M., Diaz, J. R., and Crowe, D. E. 2003. Controls on geochemical expression of subaerial exposure in Ordovician limestones from the Nashville Dome, Tennessee, USA. Journal of Sedimentary Research 73:790805.CrossRefGoogle Scholar
Raup, D. M., and Sepkoski, J. J. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.CrossRefGoogle ScholarPubMed
Ricklefs, R. E., and Schluter, D. 1993. Species diversity: regional and historical influences. Pp. 350363inRicklefs, R. E. and Schluter, D., eds. Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago.Google Scholar
Root, R. 1967. The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs 37:317350.CrossRefGoogle Scholar
Roy, K. 1996. The roles of mass extinction and biotic interaction in large-scale replacements: a reexamination using the fossil record of stromboidean gastropods. Paleobiology 22:436452.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1986. Phanerozoic overview of mass extinction. Pp. 277295inRaup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1993. Ten years in the library: new data confirm paleontological patterns. Paleobiology 19:4351.CrossRefGoogle ScholarPubMed
Sheehan, P. M. 1996. A new look at Ecologic Evolutionary Units (EEUs). Palaeogeography, Palaeoclimatology, Palaeoecology 127:2132.CrossRefGoogle Scholar
Sheehan, P. M. 2001. The late Ordovician mass extinction. Annual Review of Earth and Planetary Sciences 29:331364.CrossRefGoogle Scholar
Simberloff, D., and Dayan, T. 1991. The lifestyle concept and the structure of ecological communities. Annual Review of Ecology and Systematics 22:115143.CrossRefGoogle Scholar
Stigall, A. L. 2010. Invasive species and biodiversity crises: testing the link in the Late Devonian. PLoS ONE 5:17.CrossRefGoogle ScholarPubMed
Stigall, A. L. 2012. Speciation collapse and invasive species dynamics during the Late Devonian “mass extinction.” GSA Today 22:49.CrossRefGoogle Scholar
Todd, J. A., Jackson, J. B. C., Johnson, K. G., Fortunato, H. M., Heitz, A., Alvarez, M., and Jung, P. 2002. The ecology of extinction: molluscan feeding and faunal turnover in the Caribbean Neogene. Proceedings of the Royal Society of London B 269:571577.CrossRefGoogle ScholarPubMed
Veech, J. A., Summerville, K. S., Crist, T. O., and Gering, J. C. 2002. The additive partitioning of species diversity: recent revival of an old idea. Oikos 99:39.CrossRefGoogle Scholar
Villéger, S, Novack-Gottshall, P. M., and Mouillot, D. 2011. The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time. Ecology Letters 14:561568.CrossRefGoogle ScholarPubMed
Watkins, R. 1993. The Silurian (Wenlockian) reef fauna of southeastern Wisconsin. Palaios 8:325338.CrossRefGoogle Scholar
Zaffos, A., and Holland, S. M. 2012. Abundance and extinction in Ordovician–Silurian brachiopods, Cincinnati Arch, Ohio and Kentucky. Paleobiology 38:278291.CrossRefGoogle Scholar
Zambito, J. J. IV, Brett, C. E., and Baird, G. C. 2012a. The late Middle Devonian (Givetian) global Taghanic biocrisis in its type area (Northern Appalachian Basin): geologically rapid faunal transitions driven by global and local environmental changes. Pp. 677703(Chapter 22) inTalent, J. A., ed. Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time. Springer Netherlands, Dordrecht.Google Scholar
Zambito, J. J. IV, Brett, C. E., Baird, G. C., Kolbe, S. E., and Miller, A. I. 2012b. New perspectives on transitions between ecological-evolutionary subunits in the “type interval” for coordinated stasis. Paleobiology 38:664681.CrossRefGoogle Scholar