Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T14:54:18.871Z Has data issue: false hasContentIssue false

Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic atelostomate echinoids

Published online by Cambridge University Press:  08 February 2016

Gunther J. Eble*
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC-121, Washington, D.C. 20560 and Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501. E-mail: ebleg@nmnh.si.edu, eble@santafe.edu

Abstract

Temporal asymmetries in clade histories have often been studied in lower Paleozoic radiations. Post-Paleozoic patterns, however, are less well understood. In this paper, disparity and diversity changes in Mesozoic heart urchins were analyzed at the ordinal level, with contrasts among the sister groups Holasteroida and Spatangoida, their paraphyletic stem group Disasteroida the more inclusive clade, the superorder Atelostomata. A 38-dimensional landmark-based morphospace representing test architecture was used to describe morphological evolution in terms of total variance and total range. Discordances between disparity and diversity were evident and were expressed both as deceleration in morphological diversification in all groups and as disproportionately higher disparity early in the histories of the Atelostomata, Holasteroida Spatangoida. The finding that the early atelostomate disparity peak coincides with the origin of the orders Holasteroida and Spatangoida lends support to the perception of orders as semi-independent entities in the biological hierarchy and as meaningful proxies for morphological distinctness.

A comparison of holasteroid and spatangoid responses to the end-Cretaceous mass extinction revealed morphological selectivity. Paleocene spatangoid survivors showed no change in disparity relative to the Campanian-Maastrichtian sample, suggesting nonselectivity. Holasteroids suffered a pronounced loss in disparity (despite a rather high Late Cretaceous level of disparity), indicating morphological selectivity of extinction.

Partitioning of disparity into plastral and nonplastral components, reflecting different degrees of developmental entrenchment and functionality, suggests that the origin of holasteroids and spatangoids is more consistent with an exploration of the developmental flexibility of nonplastral constructions than with uniform ecospace occupation. Within groups, several patterns were also most consistent with intrinsic controls. For plastral landmarks, there is an apparent increase in developmental modularity and decrease in developmental constraint from disasteroids to holasteroids and spatangoids. For nonplastral landmarks, no substantial change in disparity was observed from disasteroids to holasteroids and spatangoids, suggesting the maintenance of a developmental constraint despite the passage of time and ecological differentiation. More generally, this study suggests that certain topologies of disparity and evolutionary mechanisms potentially characteristic of the lower Paleozoic radiations of higher taxa (e.g., developmental flexibility) need not be confined to any given time period or hierarchical level.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Agassiz, A. 1881. Report on the scientific results of the voyage of H.M.S. Challenger during the years 1873–76. Zoology, III, Part 9. Report on the Echinoidea. Her Majesty's Stationery Office, London.Google Scholar
Arnold, S. J. 1992. Constraints on phenotypic evolution. American Naturalist 140:S85S107.Google Scholar
Beurlen, K. 1934. Monographie der Echinoiden Familie Collyritidae d'Orb. Palaeontographica, Abteilung A 80:41194.Google Scholar
Bookstein, F. L. 1987. Random walk and the existence of evolutionary rates. Paleobiology 13:446464.Google Scholar
Bookstein, F. L. 1988. Random walk and the biometrics of morphological characters. Evolutionary Biology 9:369398.Google Scholar
Bromley, R. G., Jensen, M., and Asgaard, U. 1995. Spatangoid echinoids: deep-tier trace fossils and chemosymbiosis. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 195:2535.Google Scholar
Collignon, M. 1949. Tessieria, nouveau genre d'échinide du Maestrichtien du Sénegal (Tessieria senegalensis, sp. nov.). Bulletin de la Société Géologique de France 19:263268.Google Scholar
Conway Morris, S. 1998. The crucible of creation. Oxford University Press, Oxford.Google Scholar
Cotteau, G. H. 1867–1874. Paléontologie Française, Terrains Jurassiques IX. Masson, Paris.Google Scholar
Cotteau, M. G. 1897. Descripción de los equinoides fosiles de la Isla de Cuba. Impressor de Camara de S. M., Madrid.Google Scholar
David, B. 1979. Les Toxaster (Échinides, Spatangoïdes) de l'Éocrétacé subalpin de Castellane. Thèse de doctorat, Université de Franche-Comté, Besançon.Google Scholar
David, B. 1988. Origins of the deep-sea holasteroid fauna. Pp. 331346in Paul, and Smith, 1988.Google Scholar
David, B. 1990. Mosaic pattern of heterochronies. Variation and diversity in Pourtalesiidae (deep-sea echinoids). Evolutionary Biology 24:297327.Google Scholar
Dawkins, R. 1989. The evolution of evolvability. Pp. 201220in Langton, C. L., ed. Artificial life. Addison-Wesley, New York.Google Scholar
Devriès, A. 1960. Contribution a l'étude de quelques groupes d'échinides fossiles d'Algérie. Thèse de doctorat, Université de Paris, Paris.Google Scholar
Donovan, S. K., and Veale, C. 1996. The irregular echinoids Echinoneus Leske and Brissus Gray in the Cenozoic of the Antillean region. Journal of Paleontology 70:632640.Google Scholar
Dru, M. L. 1884. Note sur la géologie et l'hydrologie de la région de Bechtaou (Russie-Caucase). Bulletin de la Société Géologique de France 12:474.Google Scholar
Durham, J. W., et al. 1966. Echinodermata 3, Asterozoa–Echinozoa, Vol. 2. Part U ofMoore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America and University of Kansas Press, New York.Google Scholar
Eble, G. J. 1998a. The role of development in evolutionary radiations. Pp. 132161in McKinney, M. L. and Drake, J. A., eds. Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University Press, New York.Google Scholar
Eble, G. J. 1998b. Diversification of disasteroids, holasteroids and spatangoids in the Mesozoic. Pp. 629638in Mooi, R. and Telford, M., eds. Echinoderms: San Francisco. Balkema, Rotterdam.Google Scholar
Eble, G. J. 1999. Originations: land and sea compared. Geobios 32:223234.Google Scholar
Efron, B., and Tibshirani, R. J. 1993. An introduction to the bootstrap. Chapman and Hall, New York.Google Scholar
Ernst, G. 1972. Grundfragen der Stammesgeschichte bei irregulären Echiniden der nordwesteuropäischen Oberkreide. Geologisches Jahrbuch A 4:63175.Google Scholar
Erwin, D. H. 1999. The origin of bodyplans. American Zoologist 39:617629.Google Scholar
Erwin, D. H., Valentine, J. W., and Sepkoski, J. J. Jr. 1987. A comparative study of diversification events: the early Paleozoic versus the Mesozoic. Evolution 41:11771186.Google Scholar
Foote, M. 1992. Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18:116.Google Scholar
Foote, M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19:185204Google Scholar
Foote, M. 1994. Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.Google Scholar
Foote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology 21:273299.Google Scholar
Foote, M. 1996a. Models of morphological diversification. Pp. 6286in Jablonski, D., Erwin, D. H., and Lipps, J. H., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Foote, M. 1996b. Perspective: evolutionary patterns in the fossil record. Evolution 50:111.Google Scholar
Foote, M. 1997. The evolution of morphological diversity. Annual Review of Ecology and Systematics 28:129152.Google Scholar
Gale, A. S., and Smith, A. B. 1982. The palaeobiology of the Cretaceous irregular echinoids Infulaster and Hagenowia. Palaeontology 25:1142.Google Scholar
Gordon, I. 1926. On the development of the calcareous test of Echinocardium cordatum. Philosophical Transactions of the Royal Society of London B 215:255313Google Scholar
Gould, S. J. 1989. Wonderful life. Norton, New York.Google Scholar
Gould, S. J., Gilinsky, N. L., and German, R. Z. 1987. Asymmetry of lineages and the direction of evolutionary time. Science 236:14371441.Google Scholar
Greenstein, B. J. 1993. Is the fossil record of regular echinoids really so poor? A comparison of living and subfossil assemblages. Palaios 8:587601.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale 1989. Cambridge University Press, Cambridge.Google Scholar
Jablonski, D. 1989. The biology of mass extinction: a palaeontological view. Philosophical Transactions of the Royal Society of London B 325:357368.Google Scholar
Jablonski, D., and Bottjer, D. J. 1990. The origin and diversification of major groups: environmental patterns and macroevolutionary lags. In Taylor, P. D. and Larwood, G. P., eds. Major evolutionary radiations. Systematics Association Special Volume 42:1757. Clarendon, Oxford.Google Scholar
Jablonski, D., and Bottjer, D. J. 1991. Environmental patterns in the origin of higher taxa: the post-Paleozoic fossil record. Science 252:18311833.Google Scholar
Jablonski, D., and Raup, D. M. 1995. Selectivity of end-Cretaceous marine bivalve extinctions. Science 268:389391.Google Scholar
Jeffery, C. H., and Smith, A. B. 1998. Estimating extinction levels for echinoids across the Cretaceous-Tertiary boundary. Pp. 695701in Mooi, R. and Telford, M., eds. Echinoderms: San Francisco. Balkema, Rotterdam.Google Scholar
Jensen, M. 1988. Functional morphology and systematics of spatangoids (Euechinoidea). Pp. 327335in Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L., eds. Echinoderm biology. Balkema, Rotterdam.Google Scholar
Kanazawa, K. 1992. Adaptation of test shape for burrowing and locomotion in spatangoid echinoids. Palaeontology 35:733750.Google Scholar
Kauffman, S. A. 1993. The origins of order. Oxford University Press, Oxford.Google Scholar
Kidwell, S. M., and Baumiller, T. K. 1990. Experimental disintegration of regular echinoids: roles of temperature, oxygen, and decay thresholds. Paleobiology 16:247271.Google Scholar
Kier, P. M. 1972. Tertiary and Mesozoic echinoids of Saudi Arabia. Smithsonian Contributions to Paleobiology 10.Google Scholar
Kier, P. M. 1974. Evolutionary trends and their functional significance in the post-Paleozoic echinoids. Journal of Paleontology (Memoir) 48:195.Google Scholar
Kier, P. M. 1977. The poor fossil record of the regular echinoid. Paleobiology 3:168174.Google Scholar
Kier, P. M. 1984. Echinoids from the Triassic (St. Cassian) of Italy, their lantern supports, and a revised phylogeny of Triassic echinoids. Smithsonian Contributions to Paleobiology 56.Google Scholar
Lambert, J. 1896. Notes sur quelques echinides crétacés de Madagascar. Bulletin de la Société Géologique de France, Série 3, 24:313332.Google Scholar
Lande, R. 1986. The dynamics of peak shifts and the pattern of morphological evolution. Paleobiology 12:343354.Google Scholar
Levinton, J. S. 1996. Trophic group and the end-Cretaceous extinction: did deposit feeders have it made in the shade? Paleobiology 22:104112.Google Scholar
Lewontin, R. C. 1978. Adaptation. Scientific American 249:212222.Google Scholar
Lloyd, E. A., and Gould, S. J. 1993. Species selection on variability. Proceedings of the National Academy of Sciences USA 90:595599.Google Scholar
Loriol, P. de 1873. Echinologie helvetique. II. H. Georg, Geneva.Google Scholar
Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., and Wolpert, L. 1984. Developmental constraints and evolution. Quartely Review of Biology 60:265287.Google Scholar
McKinney, M. L. 1988. Roles of allometry and ecology in echinoid evolution. Pp. 165173in Paul, and Smith, 1988.Google Scholar
McNamara, K. J. 1987. Plate translocation in spatangoid echinoids: its morphological, functional, and phylogenetic significance. Paleobiology 13:312325.Google Scholar
McNamara, K. J. 1988. Heterochrony and the evolution of echinoids. Pp. 149163in Paul, and Smith, 1988.Google Scholar
McNamara, K. J. 1989. The role of heterochrony in the evolution of spatangoid echinoids. Geobios, Mémoire Spécial 12:283295.Google Scholar
McNamara, K. J. 1990. Echinoids. Pp. 205231in McNamara, K. J., ed. Evolutionary trends. University of Arizona Press, Tucson.Google Scholar
McShea, D. W. 1993. Arguments, tests, and the Burgess Shale—a commentary on the debate. Paleobiology 19:399402.Google Scholar
Mintz, L. W. 1968. Echinoids of the Mesozoic families Collyritidae D'Orbigny, 1853 and Disasteridae Gras, 1848. Journal of Paleontology 42:12721288.Google Scholar
Mooi, R., and David, B. 1996. Phylogenetic analysis of extreme morphologies: deep-sea holasteroid echinoids. Journal of Natural History 30:913953.Google Scholar
Mooney, C. Z., and Duval, R. D. 1993. Bootstrapping: a nonparametric approach to statistical inference. Sage Publications, Newbury Park, Calif.Google Scholar
Mortensen, T. 1950. A monograph of the Echinoidea. Vol. 5, Part I. Spatangoida. Reitzel, Copenhagen.Google Scholar
Néraudeau, D. 1994. Hemiasterid echinoids (Echinodermata: Spatangoida) from the Cretaceous Tethys to the present-day Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology 110:319344.Google Scholar
Orbigny, A. D. d', and Cotteau, G. H. 1854–1860. Paléontologie francaise, terrains crétacés VI. Masson, Paris.Google Scholar
Paul, C. R. C., and Smith, A. B., eds. 1988. Echinoderm phylogeny and evolutionary biology. Clarendon, Oxford.Google Scholar
Raup, D. M. 1979. Biases in the fossil record of species and genera. Bulletin of the Carnegie Museum of Natural History 13:8591.Google Scholar
Raup, D. M. 1987. Neutral models in paleobiology. Pp. 121132in Nitecki, M. H. and Hoffman, , eds. Neutral models in biology. Oxford University Press, New York.Google Scholar
Raup, D. M., and Boyajian, G. E. 1988. Patterns of generic extinction in the fossil record. Paleobiology 14:109125.Google Scholar
Reyment, R., and Jöreskog, K. G. 1993. Applied factor analysis in the natural sciences. Cambridge University Press, Cambridge.Google Scholar
Roth, V. L. 1993. On three-dimensional morphometrics, and on the identification of landmark points. Pp. 4161in Marcus, L. F., Bello, E., and García-Valdecasas, A., eds. Contributions to morphometrics. Museo Nacional de Ciencias Naturales, Madrid.Google Scholar
Sanderson, M. J. 1995. Objections to bootstrapping phylogenies: a critique. Systematic Biology 44:299320.Google Scholar
Savrda, C. E., Bottjer, D. J., and Seilacher, A. 1991. Redox related benthic events. Pp. 524541in Einsele, G., Ricken, W., and Seilacher, A., eds. Cycles and events in stratigraphy. Springer, Berlin.Google Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:246267.Google Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.Google Scholar
Sepkoski, J. J. Jr. 1991. Population biology models and macroevolution. In Gilinsky, N. L. and Signor, P. W., eds. Analytical paleobiology. Short Courses in Paleontology 4:136156. Paleontological Society, Knoxville, Tenn.Google Scholar
Sepkoski, J. J. Jr. 1998. Rates of speciation in the fossil record. Philosophical Transactions of the Royal Society of London B 353:315326.Google Scholar
Sepkoski, J. J. Jr., and Kendrick, D. C. 1993. Numerical experiments with model monophyletic and paraphyletic taxa. Paleobiology 19:168184.Google Scholar
Sepkoski, J. J. Jr., and Raup, D. M. 1986. Periodicity of marine extinction events. Pp. 336in Elliot, D. K., ed. Dynamics of extinction. Wiley, New York.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435437.Google Scholar
Seunes, M. J. 1889. Échinides crétacés des Pyrenées occidentales II. Bulletin de la Société Géologique de France 17:821.Google Scholar
Seunes, M. J. 1890. Échinides crétacés des Pyrenées occidentales III. Bulletin de la Société Géologique de France 19:23.Google Scholar
Sheehan, P. M., and Hansen, T. A. 1986. Detritus feeding as a buffer to extinction at the end of the Cretaceous. Geology 14:868870.Google Scholar
Shubin, N., and Wake, D. 1996. Phylogeny, variation, and morphological integration. American Zoologist 36:5160.Google Scholar
Smith, A. B. 1981. Implications of lantern morphology for the phylogeny of post-Palaeozoic echinoids. Palaeontology 23:779801.Google Scholar
Smith, A. B. 1984. Echinoid palaeobiology. Allen and Unwin, London.Google Scholar
Smith, A. B. 1994. Systematics and the fossil record. Blackwell Scientific, Oxford.Google Scholar
Smith, A. B., and Bengtson, P. 1991. Cretaceous echinoids from north-eastern Brazil. Fossils, and Strata, 31.Google Scholar
Smith, A. B., and Hollingsworth, N. T. J. 1990. Tooth structure and phylogeny of the Upper Permian echinoid Miocidaris keyserlingi. Proceedings of the Yorkshire Geological Society 48:4760.Google Scholar
Smith, A. B., and Jeffery, C. H. 1998. Selectivity of extinction among sea-urchins at the end of the Cretaceous period. Nature 392:6971.Google Scholar
Smith, A. B., and Jeffery, C. H.In press. Fossil echinoids of the Maastrichtian and Palaeocene: an illustrated key. Special Papers in Paleontology.Google Scholar
Smith, A. B., and Patterson, C. 1988. The influence of taxonomic method on the perception of patterns of evolution. Evolutionary Biology 23:127216.Google Scholar
Solovjev, A. N. 1971. Late Jurassic and early Cretaceous disasterid echinoids of the USSR. Akademiia Nauk SSSR, Paleontologicheskii Institut, Trudy131. [In Russian.]Google Scholar
Solovjev, A. N., and Melikov, O. G. 1963. Turanglaster, a new echinoid genus from the Upper Cretaceous of Turkmenia and Azerbaijan. Paleontologicheskii Zhurnal 1–2:105110. [In Russian.]Google Scholar
Stanley, S. M. 1979. Macroevolution. W. H. Freeman, San Francisco.Google Scholar
Stanley, S. M. 1990. The general correlation between rate of speciation and rate of extinction: fortuitous causal linkages. Pp. 103127in Ross, R. M. and Allmon, W. D., eds. Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago.Google Scholar
Stokes, R. B. 1979. An analysis of ranges of spatangoid echinoid genera and their bearing on the Cretaceous-Tertiary boundary. Pp. 7282in Christensen, W. K. and Birkelund, T., eds. Proceedings of the Cretaceous-Tertiary boundary events symposium. I. University of Copenhagen, Copenhagen.Google Scholar
Szymanska, W. J. 1963. Échinides irréguliers du Dogger de Pologne. Acta Paleontologica Polonica 3:293414.Google Scholar
Thierry, J. 1984. Evolutionary history of Jurassic Collyritidae (Echinoidea, Disasteroida) in the Paris Basin (France). Pp. 125133in Keegan, B. F. and O'Connor, D. B. S., eds. Echinodermata. Proceedings of the fifth international echinoderm conference. Balkema, Rotterdam.Google Scholar
Valentine, J. W. 1995. Why no new phyla after the Cambrian? Genome and ecospace hypotheses revisited. Palaios 10:190194.Google Scholar
Valentine, J. W., Awramik, S. M., Signor, P. W., and Sadler, P. M. 1991. The biological explosion at the Precambrian-Cambrian boundary. Evolutionary Biology 25:279356.Google Scholar
Valentine, J. W., Erwin, D. H., and Jablonski, D. 1996. Developmental evolution of metazoan body plans: the fossil evidence. Developmental Biology 173:373381.Google Scholar
Valentine, J. W., Jablonski, D., and Erwin, D. H. 1999. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126:851859.Google Scholar
Van Valen, L. 1974. Multivariate structural statistics in natural history. Journal of Theoretical Biology 45:235247.Google Scholar
Van Valen, L. 1978. The statistics of variation. Evolutionary Theory 4:3343.Google Scholar
Wagner, G. P. 1986. The systems approach: an interface between development and population genetic aspects of evolution. Pp. 149165in Raup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin.Google Scholar
Wagner, G. P. 1988. The significance of developmental constraints for phenotypic evolution by natural selection. Pp. 222229in de Jong, G., ed. Population genetics and evolution. Springer, Berlin.Google Scholar
Wagner, G. P. 1996. Homologues, natural kinds and the evolution of modularity. American Zoologist 36:3643.Google Scholar
Wagner, G. P., and Altenberg, L. 1996. Complex adaptations and the evolution of evolvability. Evolution 50:967976.Google Scholar
Wagner, P. J. 1995. Testing evolutionary constraint hypotheses with early Paleozoic gastropods. Paleobiology 21:248272.Google Scholar
Wagner, P. J. 1997. Patterns of morphologic diversification among the Rostroconchia. Paleobiology 23:115145.Google Scholar
Wills, M. A., Briggs, D. E. G., and Fortey, R. A. 1994. Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods. Paleobiology 20:93130.Google Scholar