Skip to main content Accessibility help

Adjusting global extinction rates to account for taxonomic susceptibility

  • Steve C. Wang (a1) and Andrew M. Bush (a2)


Studies of extinction in the fossil record commonly involve comparisons of taxonomic extinction rates, often expressed as the percentage of taxa (e.g., families or genera) going extinct in a time interval. Such extinction rates may be influenced by factors that do not reflect the intrinsic severity of an extinction trigger. Two identical triggering events (e.g., bolide impacts, sea level changes, volcanic eruptions) could lead to different taxonomic extinction rates depending on factors specific to the time interval in which they occur, such as the susceptibility of the fauna or flora to extinction, the stability of food webs, the positions of the continents, and so on. Thus, it is possible for an extinction event with a higher taxonomic extinction rate to be caused by an intrinsically less severe trigger, compared to an event with a lower taxonomic extinction rate.

Here, we isolate the effects of taxonomic susceptibility on extinction rates. Specifically, we quantify the extent to which the taxonomic extinction rate in a substage is elevated or depressed by the vulnerability to extinction of classes extant in that substage. Using a logistic regression model, we estimate that the taxonomic susceptibility of marine fauna to extinction has generally declined through the Phanerozoic, and we adjust the observed extinction rate in each substage to estimate the intrinsic extinction severity more accurately. We find that mass extinctions do not generally occur during intervals of unusually high susceptibility, although susceptibility sometimes increases in post-extinction recovery intervals. Furthermore, the susceptibility of specific animal classes to extinction is generally similar in times of background and mass extinction, providing no evidence for differing regimes of extinction selectivity. Finally, we find an inverse correlation between extinction rate within substages and the evenness of diversity of major taxonomic groups, but further analyses indicate that low evenness itself does not cause high rates of extinction.



Hide All
Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19:716723.
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.
Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction: experimental results and theoretical interpretation. Science 208:10951108.
Appleton, D. R., French, J. M., and Vanderpump, M. P. J. 1996. Ignoring a covariate: an example of Simpson's paradox. American Statistician 50:340341.
Ausich, W. I., and Bottjer, D. J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173174.
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746 in Tevesz, M. and McCall, P., eds. Biotic interactions in recent and fossil benthic communities. Plenum, New York.
Bambach, R. K. 1985. Classes and Adaptive Variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253 in Valentine, J. W., ed. Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, N.J.
Bambach, R. K. 1999. Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32:131144.
Bambach, R. K. 2006. Phanerozoic biodiversity mass extinctions. Annual Review of Earth and Planetary Sciences 34, 127155.
Bambach, R. K., Knoll, A. H., and Sepkoski, J. J. Jr. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences USA 99:68546859.
Bambach, R. K., Knoll, A. H., and Wang, S. C. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522542.
Barnett, A. 1994. How numbers can trick you. Technology Review 97:3845.
Benton, M. J. 1995. Diversification and extinction in the history of life. Science 268:5258.
Bickel, P. J., Hammel, E. A., and O'Connell, J. W. 1975. Sex bias in graduate admissions: data from Berkeley. Science 187:398404.
Bond, D., Wignall, P. B., and Racki, G. 2004. Extent and duration of marine anoxia during the Frasnian-Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geological Magazine 141:173193.
Boyajian, G. F. 1986. Phanerozoic trends in background extinction: consequences of an aging fauna. Geology 14:955958.
Brasier, M. D., and Sukhov, S. S. 1998. The falling amplitude of carbon isotopic oscillations through the Lower to Middle Cambrian: Northern Siberia data. Canadian Journal of Earth Sciences 35:353373.
Casella, G., and Berger, R. L. 2002. Statistical inference, 2d ed. Duxbury, Pacific Grove, Calif.
Chen, Z.-Q., Kunio, K., and George, A. D. 2005. Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: a global review. Palaeogeography, Palaeoclimatology, Palaeoecology 224:270290.
Droser, M. L., Bottjer, D. J., Sheehan, P. M., and McGhee, G. R. 2000. Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology 28:675678.
Erwin, D. H. 2001. Lessons from the past: biotic recoveries from mass extinctions. Proceedings of the National Academy of Sciences USA 98:53995403.
Erwin, D. H. 2006. Extinction: how life on earth nearly ended 250 million years ago. Princeton University Press, Princeton, N.J.
Flessa, K. W., and Jablonski, D. 1985. Declining Phanerozoic background extinction rates: effect of taxonomic structure? Nature 313:216218.
Foote, M. 2007. Extinction and quiescence in marine animal genera. Paleobiology 33:262273.
Gilinsky, N. L. 1994. Volatility and the Phanerozoic decline of background extinction intensity. Paleobiology 20:445458.
Gross, S. R., and Mauro, R. 1984. Patterns of death: an analysis of racial disparities in capital sentencing and homicide victimization. Stanford Law Review 37:27153.
Hosmer, D. W., and Lemeshow, S. 2000. Applied logistic regression, 2d ed. Wiley, New York.
Hunt, G. 2006. Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578602.
Isozaki, Y. 1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276:235238.
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129133.
Jablonski, D. 2005. Mass extinctions and macroevolution. In Vrba, E. S. and Eldredge, N., eds. Macroevolution: diversity, disparity, contingency. Paleobiology 31(Suppl. to 2):192210.
Joachimski, M. M., and Buggisch, W. 2002. Conodont apatite δ18O signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology 30:711714.
Kiessling, W. 2005. Long-term relationships between ecological stability and biodiversity in Phanerozoic reefs. Nature 433:410413.
Knoll, A. H., Bambach, R. K., Canfield, D. E., and Grotzinger, J. P. 1996. Comparative earth history and Late Permian mass extinction. Science 273:452457.
Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., and Fischer, W. W. 2007. Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters 256:295313.
Krug, A. Z., and Patzkowsky, M. E. 2007. Geographic variation in turnover and recovery from the Late Ordovician mass extinction. Paleobiology 33:435454.
Lehrmann, D. J., Payne, J. L., Felix, S. V., Dillett, P. M., Wang, H., Yu, Y., and Wei, J. 2003. Permian-Triassic boundary sections from shallow-marine carbonate platforms of the Nanpanjiang Basin, South China: implications for oceanic conditions associated with the end-Permian extinction and its aftermath. Palaios 18:138152.
MacLeod, N. 2004. Identifying Phanerozoic extinction controls: statistical considerations and preliminary results. In Beaudoin, A. B. and Head, M. J., eds. The palynology and micropaleontology of boundaries. Geological Society of London Special Publication 230:1133.
McCann, K. S. 2000. The diversity-stability debate. Nature 405:228233.
McGhee, G. R. Jr., Sheehan, P. M., Bottjer, D. J., Droser, M. L. 2004. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeography, Palaeoclimatology, Palaeoecology 211:289297.
McGrady-Steed, J., Harris, P. M., and Morin, P. J. 1997. Biodiversity regulates ecosystem predictability. Nature 390:162165.
Miller, A. I. 1998. Biotic transitions in global marine diversity. Science 281:11571160.
Naeem, S., and Li, S. 1997. Biodiversity enhances ecosystem reliability. Nature 390:507509.
Olszewski, T. D. 2004. A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos 104:377387.
Payne, J. L. 2005. Evolutionary dynamics of gastropod size across the end-Permian extinction and through the Triassic recovery interval. Paleobiology 31:269290.
Payne, J. L., and Finnegan, S. 2007. The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences USA 104:1050610511.
Payne, J. L., Lehrmann, D. J., Wei, J., Orchard, M. J., Schrag, D. P., and Knoll, A. H. 2004. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506509.
Payne, J. L., Lehrmann, D. J., Wei, J., and Knoll, A. H. 2006. The pattern and timing of biotic recovery from the end-Permian extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios 21:6385.
Pease, C. M. 1992. On the declining extinction and origination rates of fossil taxa. Paleobiology 18:8992.
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102:1232612331.
Peters, S. E. 2006. Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology 32:387407.
Pruss, S. B., and Bottjer, D. J. 2004a. Early Triassic trace fossils of the western United States and their implications for prolonged environmental stress from the end-Permian mass extinction. Palaios 19:551564.
Pruss, S. B., and Bottjer, D. J. 2004b. Late Early Triassic microbial reefs of the western United States: a description and model for their deposition in the aftermath of the end-Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 211:127137.
Pruss, S., Fraiser, M., and Bottjer, D. J. 2004. Proliferation of Early Triassic wrinkle structures: implications for environmental stress following the end-Permian mass extinction. Geology 32:461464.
R Development Core Team. 2007. R: a language and environment for statistical computing, Version 2.5.0. R Foundation for Statistical Computing, Vienna.
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.
Raup, D. M., and Sepkoski, J. J. Jr. 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences USA 81:801805.
Retallack, G. J. 1999. Postapocalyptic greenhouse revealed by earliest Triassic paleosols in the Sydney Basin, Australia. Geological Society of America Bulletin 111:5270.
Rodland, D. L., and Bottjer, D. J. 2001. Biotic recovery from the end-Permian mass extinction: behavior of the inarticulate brachiopod Lingula as a disaster taxon. Palaios 16:95101.
Rohde, R. A., and Muller, R. A. 2005. Cycles in fossil diversity. Nature 434:208210.
Roopnarine, P. D., Angielczyk, K. D., Wang, S. C., and Hertog, R. 2007. Trophic network models explain instability of Early Triassic terrestrial communities. Proceedings of the Royal Society of London B 274:20772086.
Saltzman, M. R., González, L. A., and Lohmann, K. C. 2000. Earliest Carboniferous cooling step triggered by the Antler orogeny? Geology 28:347350.
Schubert, J. K., and Bottjer, D. J. 1992. Early Triassic stromatolites as post-mass extinction disaster forms. Geology 20:883886.
Schubert, J. K., and Bottjer, D. J. 1995. Aftermath of the Permian–Triassic mass extinction event: paleoecology of Lower Triassic carbonates in the Western USA. Palaeogeography, Palaeoclimatology, Palaeoecology 116:139.
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246267.
Sepkoski, J. J. Jr. 1987. Environmental trends in extinction during the Phanerozoic. Science 235:6466.
Sepkoski, J. J. Jr. 1991. A model of onshore-offshore change in faunal diversity. Paleobiology 17:5877.
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363.
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435437.
Sheehan, P. M. 2001. The Late Ordovician mass extinction. Annual Review of Earth and Planetary Sciences 29:331364.
Sheehan, P. M., and Fastovsky, D. E. 1992. Major extinctions of land-dwelling vertebrates at the Cretaceous-Tertiary boundary, eastern Montana. Geology 20:556560.
Simpson, E. H. 1951. The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society B 13:238241.
Smith, A. B., and Jeffery, C. H. 1998. Selectivity of extinction among sea urchins at the end of the Cretaceous period. Nature 392:6971.
Stanley, S. M. 1979. Macroevolution: pattern and process. In W. H. Freeman, San Francisco.
Stanley, S. M. 2007. An analysis of the history of marine animal diversity. Paleobiology Memoirs No. 4. Paleobiology 33(Suppl. to No. 4).
Stanley, S. M., and Yang, X. 1994. A double mass extinction at the end of the Paleozoic Era. Science 266:13401344.
Tilman, D., and Downing, J. A. 1994. Biodiversity and stability in grasslands. Nature 367:363365.
Twitchett, R. J., Looy, C. V., Morante, R., Visscher, H., and Wignall, P. B. 2001. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology 29:351354.
Twitchett, R. J., Krystyn, L., Baud, A., Wheeley, J. R., Richoz, S. 2004. Rapid marine recovery after the end-Permian mass-extinction event in the absence of marine anoxia. Geology 32:805808.
Van Valen, L. M. 1985. A theory of origination and extinction. Evolutionary Theory 7:133142.
Van Valen, L. M. 1987. Comment (on “Phanerozoic trends in background extinction: consequences of an aging fauna”). Geology 14:875876.
Wang, S. C. 2003. On the continuity of background and mass extinction. Paleobiology 29:455467.
Wang, S. C., and Everson, P. J. 2007. Confidence intervals for pulsed mass extinction events. Paleobiology 33:324336.
Wignall, P. B., and Twitchett, R. J. 2002. Extent, duration, and nature of the Permian-Triassic superanoxic event. Geological Society of America Special Paper 356:395413.

Related content

Powered by UNSILO

Adjusting global extinction rates to account for taxonomic susceptibility

  • Steve C. Wang (a1) and Andrew M. Bush (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.