Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-18T09:33:52.790Z Has data issue: false hasContentIssue false

Problems with using rock outcrop area as a paleontological sampling proxy: rock outcrop and exposure area compared with coastal proximity, topography, land use, and lithology

Published online by Cambridge University Press:  08 April 2016

Abstract

Fossil specimens can be recovered easily only from exposed localities, so rock exposure area should represent a better proxy for rock availability than the frequently used outcrop (i.e., map) area. Data collected via remote sensing and GIS show that map area does not consistently correlate with exposure area in different regions. Proportional rock exposure is not geographically consistent and is influenced by a number of variables that are independent of outcrop area, including proximity to the coast, elevation, bedrock age, land use and lithology. These variables appear to be non-independent in their influence on rock exposure, and are not consistent in their effects across continents. The inconsistency in the correlation between outcrop and exposure area, and the variability in the influence of different factors on rock exposure, suggests that using outcrop area as a sampling proxy is poorly supported. The weaknesses in using outcrop area as a sampling proxy, highlighted by the lack of correlation with exposure area, suggest that a single accurate global sampling proxy may never be attained and it is premature to assume that paleodiversity curves can be corrected using such proxies. It is therefore preferable to work on a regional scale, comparing regional fossil collection data with a number of proxies representing all aspects of sampling. The lack of correlation between outcrop and exposure area suggests that the covariance detected between outcrop area and paleodiversity might be better explained by a common-cause model, and that geological megabiases may not have had as profound an effect on paleodiversity curves as previously thought.

Type
Articles
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. J., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.Google Scholar
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašovych, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.Google Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.Google Scholar
Barnosky, A. D., Carrasco, M. A., and Davis, E. B. 2005. The impact of the species-area relationship on estimates of palaeodiversity. PLoS Biology 3(8):e266.Google Scholar
Barrett, P. M., McGowan, A. J., and Page, V. 2009. Dinosaur diversity and the rock record. Proceedings of the Royal Society of London B 276:26672674.Google Scholar
Benson, R. B. J., Butler, R. J., Lindgren, J., and Smith, A. S. 2010. Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. Proceedings of the Royal Society of London B 277:829834.Google Scholar
Benton, M. J. 1995. Diversification and extinction in the history of life. Science 268:5258.Google Scholar
Benton, M. J. 2001. Biodiversity on land and in the sea. Geological Journal 36:211230.Google Scholar
Benton, M. J. 2010. The origins of modern biodiversity on land. Philosophical Transactions of the Royal Society of London B 365:36673679.Google Scholar
Benton, M. J., and Emerson, B. C. 2007. How did life become so diverse? The dynamics of diversification according to the fossil record and molecular phylogenetics. Paleontology 50:2340.Google Scholar
Benton, M. J., Wills, M. A., and Hitchin, R. 2000. Quality of the fossil record through time. Nature 403:534537.Google Scholar
Benton, M. J., Tverdokhlebov, V. P., and Surkov, M. V. 2004. Ecosystem re-modeling among vertebrates at the Permian-Triassic boundary in Russia. Nature 432:97100.Google Scholar
Benton, M. J., Dunhill, A. M., Lloyd, G. T., and Marx, F. G. 2011. Assessing the quality of the fossil record: insights from vertebrates. In McGowan, A. J.and Smith, A. B., eds. Comparing the geological and fossil records: implications for biodiversity studies. Geological Society of London Special Publication. 358:6394.Google Scholar
Bernard, E. L., Ruta, M., Tarver, J. E., and Benton, M. J. 2010. The fossil record of early tetrapods: Worker effort and the end-Permian mass extinction. Acta Palaeontologica Polonica 55:229239.Google Scholar
Butler, R. J., Barrett, P. M., Nowbath, S., and Upchurch, P. 2009. Estimating the effects of the rock record on pterosaur diversity patterns: implications for hypotheses of bird/pterosaur competitive replacement. Paleobiology 35:432446.Google Scholar
Butler, R. J., Benson, R. B. J., Carrano, M. T., Mannion, P. D., and Upchurch, P. 2010. Sea level, dinosaur diversity and sampling biases: investigating the ‘common cause’ hypothesis in the terrestrial realm. Proceedings of the Royal Society of London B 278:11651170.Google Scholar
Chew, A.and Oheim, K. 2009. Using GIS to determine the effects of two common taphonomic biases on vertebrate fossil assemblages. Palaios 24:367376.Google Scholar
Crampton, J. S., Beu, A. G., Cooper, R. A., Jones, C. A., Marshall, B., and Maxwell, P. A. 2003. Estimating the rock volume bias in paleobiodiversity studies. Science 301:358360.Google Scholar
Crampton, J. S., Foote, M., Beu, A. G., Cooper, R. A., Matcham, I., Jones, C. M., Maxwell, P. A., and Marshall, B. 2006. Second-order sequence stratigraphic controls on the quality of the fossil record at an active margin: New Zealand Eocene to Recent shelf molluscs. Palaios 21:86105.Google Scholar
Dunhill, A. M. 2011. Using remote sensing and a GIS to quantify rock exposure area in England and Wales: implications for paleodiversity studies. Geology 39:111114.Google Scholar
Fara, E. 2002. Sea-level variations and the quality of the continental fossil record. Journal of the Geological Society, London 159:489491.Google Scholar
Foote, M. 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Geology 111:125148.Google Scholar
Fountaine, M. R., Benton, M. J., Dyke, G. J., and Nudds, R. L. 2005. The quality of the fossil record of Mesozoic birds. Proceedings of the Royal Society of London B 272:289294.Google Scholar
Fröbisch, J. 2008. Global taxonomic diversity of Anomodonts (Tetropoda, Therapsida) and the terrestrial rock record across the Permian-Triassic boundary. PLoS ONE 3(11):e3733.Google Scholar
Gradstein, F. M., Ogg, J. G., Agterberg, F. P., Bleeker, W., Cooper, R. A., Davydov, V., Gibbard, P., Hinnov, L., House, M. R., Lourens, L., Luterbacher, H-P., McArthur, J., Melchin, M. J., Robb, L. J., Shergold, J., Villeneuve, M., Wardlaw, B. R., Ali, J., Brinkuis, H., Hilgen, F. J., Hooker, J., Howarth, R. J., Knoll, A. H., Laskar, J., Monechi, S., Plumb, K. A., Powell, J., Raffi, I., Rohl, U., Sanfillipo, A., Schmitz, B., Shackleton, N. J., Shields, G. A., Strauss, H., Van Dam, J., van Koifschoten, T., Veizer, J., and Wilson, D. 2004. A geological time scale 2004. Cambridge University Press, Cambridge.Google Scholar
Hendricks, J. R., Lieberman, B. S., and Stigall, A. L. 2008. Using GIS to study palaeobiogeographic and macroevolutionary patterns in soft-bodied Cambrian arthropods. Palaeogeography, Palaeoclimatology, Palaeoecology 264:163175.Google Scholar
Jennings, D. S., and Hasiotis, S. T. 2006. Taphonomic analysis of a dinosaur feeding site using geographic information systems (GIS), Morrison Formation, southern Bighorn Basin, Wyoming, USA. Palaios 21:480492.Google Scholar
Kalmar, A., and Currie, D. J. 2010. The completeness of the continental fossil record and its impact on patterns of diversification. Paleobiology 36:5160.Google Scholar
Lieberman, B. S. 2005. Geobiology and paleobiogeography: tracking the coevolution of the Earth and its biota. Palaeogeography, Palaeoclimatology, Palaeoecology 219:2333.Google Scholar
Lloyd, G. T., Davis, K. E., Pisani, D., Tarver, J. E., Ruta, M., Sakamoto, M., Hone, D. W. E., Jennings, R., and Benton, M. J. 2008. Dinosaurs and the Cretaceous terrestrial revolution. Proceedings of the Royal Society of London B 275:24832490.Google Scholar
Malakhov, D. V., Dyke, G. J., and King, C. 2009. Remote sensing applied to paleontology: exploration of Upper Cretaceous sediments in Kazakhstan for potential fossil sites. Palaeontologia Electronica 12(2).Google Scholar
Mander, L., and Twitchett, R. J. 2008. Quality of the Triassic-Jurassic bivalve fossil record in Northwest Europe. Paleontology 51:12131223.Google Scholar
Mannion, P. D., and Upchurch, P. 2010. Completeness metrics and the quality of the sauropodomorph fossil record through geological and historical time. Paleobiology 36:283302.Google Scholar
Marx, F. G. 2009. Marine mammals through time: when less is more in studying palaeodiversity. Proceedings of the Royal Society of London B 276:887892.Google Scholar
Marx, F. G., and Uhen, M. D. 2010. Climate, critters, and cetaceans: Cenozoic drviers of the evolution of modern whales. Science 327:993996.Google Scholar
McGowan, A. J., and Smith, A. B. 2008. Are global Phanerozoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity. Paleobiology 34:80103.Google Scholar
Myers, C. E., and Lieberman, B. S. 2010. Sharks that pass in the night: using Geographical Information Systems to investigate competition in the Cretaceous Western Interior Seaway. Proceedings of the Royal Society of London B 278:681689.Google Scholar
Nakagawa, S. 2004. A farewell to Bonferroni: the problems of low statistical power and publication bias. Behavioral Ecology 15:10441045.Google Scholar
Oheim, K. 2007. Fossil site prediction using geographic information systems (GIS) and suitability analysis: the Two Medicine Formation, MT, a test case. Palaeogeography, Palaeoclimatology, Palaeoecology 251:354365.Google Scholar
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102:1232612331.Google Scholar
Peters, S. E. 2006. Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology 32:387407.Google Scholar
Peters, S. E., and Ausich, W. I. 2008. A sampling-adjusted macroevolutionary history for Ordovician-Early Silurian crinoids. Paleobiology 34:104116.Google Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.Google Scholar
Peters, S. E., and Foote, M. 2002. Determinants of extinction in the fossil record. Nature 416:420424.Google Scholar
Peters, S. E., and Heim, N. A. 2010. The geological completeness of paleontological sampling in North America. Paleobiology 36:6179.Google Scholar
Purnell, M. A., and Donoghue, M. J. 2005. Between death and data: biases in the interpetation of the fossil record of conodonts. Special Papers in Paleontology 73:725.Google Scholar
R Development Core Team. 2009. R: A language and environment for statistical computing, Version 2.10.1. R Foundation for Statistical Computing, Vienna.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.Google Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.Google Scholar
Rayfield, E. J., Barrett, P. M., McDonnell, R. A., and Willis, K. J. 2005. A geographical information system (GIS) study of Triassic vertebrate biochronology. Geological Magazine 142:327354.Google Scholar
Rode, A. L., and Lieberman, B. S. 2004. Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology 211:345359.Google Scholar
Rode, A. L., and Lieberman, B. S. 2005. Integrating evolution and biogeography: a case study involving Devonian crustaceans. Journal of Paleontology 79:267276.Google Scholar
Sepkoski, J. J. 1976. Species diversity in the Phanerozoic: species-area effects. Paleobiology 2:298303.Google Scholar
Sepkoski, J. J., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435437.Google Scholar
Sheehan, P. M. 1977. A reflection of labor by systematics? Paleobiology 3:325328.Google Scholar
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356:351367.Google Scholar
Smith, A. B., Gale, A. S., and Monks, N. E. A. 2001. Sea-level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27:241253.Google Scholar
Smith, A. B., and McGowan, A. J. 2005. Cyclicity in the fossil record mirrors rock outcrop area. Biology Letters 1:443445.Google Scholar
Smith, A. B., and McGowan, A. J. 2007. The shape of the Phanerozoic marine palaeodiversity curve: how much can be predicted from the sedimentary rock record of Western Europe? Paleontology 50:765774.Google Scholar
Stigall, A. L., and Lieberman, B. S. 2006. Quantitative palaeobiogeography: GIS, phylogenetic biogeographical analysis, and conservation insights. Journal of Biogeography 33:20512060.Google Scholar
Twitchett, R. J., Wignall, P. B., and Benton, M. J. 2000. Discussion on Lazarus taxa and fossil abundance at times of biotic crisis. Journal of the Geological Society, London 157:511512.Google Scholar
Uhen, M. D., and Pyenson, N. D. 2007. Diversity estimates, biases, and historiographic effects: resolving cetacean diversity in the Tertiary. Palaeontologia Electronica 10(2):11A22.Google Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Paleontology 12:684709.Google Scholar
Valentine, J. W. 1970. How many marine invertebrate fossil species? A new approximation. Journal of Paleontology 44:410415.Google Scholar
Wakabayashi, J., and Sawyer, T. L. 2001. Stream incision, tectonics, uplift, and evolution of topography of the Sierra Nevada, California. Journal of Geology 109:539562.Google Scholar
Wall, P. D., Ivany, L. C., and Wilkinson, B. H. 2009. Revisiting Raup: exploring the influence of outcrop area on diversity in light of modern sample-standardization techniques. Paleobiology 35:146167.Google Scholar
Wang, S. C., and Dodson, P. 2006. Estimating the diversity of dinosaurs. Proceedings of the National Academy of Sciences USA 103:1360113605.Google Scholar
Wignall, P. B., and Benton, M. J. 1999. Lazarus taxa and fossil abundance at times of biotic crises. Journal of the Geological Society of London 156:453456.Google Scholar