Skip to main content Accessibility help
Hostname: page-component-5bf98f6d76-xcz5z Total loading time: 0.537 Render date: 2021-04-21T21:37:24.891Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Press-pulse: a general theory of mass extinction?

Published online by Cambridge University Press:  08 April 2016

Nan Crystal Arens
Department of Geoscience, Hobart and William Smith Colleges, Geneva, New York 14456. E-mail:
Ian D. West
Department of Environmental Studies. Hobart College, Geneva, New York 14456
E-mail address:


Previous discussions of mass extinction mechanisms generally focused on circumstances unique to each event. However, some have proposed that extensive volcanism combined with bolide impact may offer a general mechanism of mass extinction. To test this hypothesis we compared generic extinction percentages for 73 stages or substages of the Mesozoic and Cenozoic. We found that the highest frequency of intervals with elevated extinction occurred when continental flood basalt volcanism and bolide impact co-occurred. In contrast, neither volcanism nor impact alone yielded statistically elevated extinction frequencies. Although the magnitude of extinction was uncorrelated with the size of the associated flood basalt or impact structure, crater diameter did correlate with extinction percentage when volcanism and impact coincided. Despite this result, case-by-case analysis showed that the volcanism-impact hypothesis alone cannot explain all intervals of elevated extinction. Continental flood volcanism and impact share important ecological features with other proposed extinction mechanisms. Impacts, like marine anoxic incursions, are pulse disturbances that are sudden and catastrophic, and cause extensive mortality. Volcanism, like climate and sea level change, is a press disturbance that alters community composition by placing multi-generational stress on ecosystems. We propose that the coincidence of press and pulse events, not merely volcanism and impact, is required to produce the greatest episodes of dying in Phanerozoic history.

Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below.


Adatte, T., Remane, J., Stinnesbeck, W., Oliva, J. G. Lopez, and Hubberten, H. 2001. Correlation of a Valanginian stable isotopic excursion in northeastern Mexico with the European Tethys. In Bartolini, C., Buffler, R. T., and Chapa, A. Cantu, eds. The Western Gulf of Mexico Basin: tectonics, sedimentary basins, and petroleum systems. AAPG Memoir 75:371388.Google Scholar
Alexander, A. C., Heard, K. S., and Culp, J. M. 2008. Emergent body size of mayfly survivors. Freshwater Biology 53:171180.Google Scholar
Alterio, N., and Moller, H. 2000. Secondary poisoning of stoats (Mustela erminea) in a South Island podocarp forest, New Zealand: implications for conservation. Wildlife Research 27:501508.CrossRefGoogle Scholar
Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:10951108.CrossRefGoogle ScholarPubMed
Arthur, M. A., and Barnes, H. L. 2006. Hits and misses: why some large impacts and LIPs cause mass extinction and others don't. Geological Society of America Abstracts with Programs 38:338.Google Scholar
Bambach, R. K. 2006. Phanerozoic biodiversity: mass extinctions. Annual Review of Earth and Planetary Sciences 34:127155.CrossRefGoogle Scholar
Bambach, R. K., Knoll, A. H., and Sepkoski, J. J. Jr. 2002. Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proceedings of the National Academy of Sciences USA 99:68546859.CrossRefGoogle ScholarPubMed
Bambach, R. K., Knoll, A. H., and Wang, S. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522542.2.0.CO;2>CrossRefGoogle Scholar
Bender, E. A., Case, T. J., and Gilpin, M. E. 1984. Perturbation experiments in community ecology: theory and practice. Ecology 65:113.CrossRefGoogle Scholar
Bengtsson, J. 2002. Disturbance and resilience in soil animal communities. European Journal of Soil Biology 38:119125.CrossRefGoogle Scholar
Berner, R. A. 2004. The Phanerozoic carbon cycle: CO2 and O2 . Oxford University Press, New York.Google Scholar
Berry, W. B. N., Ripperdan, R. L., and Finney, S. C. 2002. Late Ordovician extinction: a Laurentian view. Pp. 463471 in Koeberl, and MacLeod, 2002.Google Scholar
Bond, D.W. P.B., and Racki, G. 2004. Extent and duration of marine anoxia during the Frasnian-Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geological Magazine 141:173193.CrossRefGoogle Scholar
Bottjer, D. J. 2004. The beginning of the Mesozoic: 70 million years of environmental stress and extinction. Pp. 99118 in Taylor, 2004b.Google Scholar
Bottomley, R. J., Grieve, R., York, D., and Masaitis, V. 1997. The age of the Popigai impact event and its relation to events at the Eocene/Oligocene boundary. Nature 388:365368.CrossRefGoogle Scholar
Bralower, T. J., Premoli-Silva, I., and Malone, M. J. 2002. New evidence for abrupt climate change in the Cretaceous and Paleogene: an Ocean Drilling Program expedition to Shatsky Rise, Northwest Pacific. GSA Today 12:410.2.0.CO;2>CrossRefGoogle Scholar
Breininger, D. R., Burgman, M. A., and Stith, B. M. 1999. Influence of habitat quality, catastrophes, and population size on extinction risk of the Florida scrub-jay. Wildlife Society Bulletin 27:810822.Google Scholar
Bush, A. M., Markey, M. J., and Marshall, C. R. 2004. Removing bias from diversity curves: the effects of spatially organized biodiversity on sampling standardization. Paleobiology 30:666686.2.0.CO;2>CrossRefGoogle Scholar
Bush, A. M., and Bambach, R. K. 2004. Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. Journal of Geology 112:625642.CrossRefGoogle Scholar
Carrigy, M. A. 1968. Evidence of shock metamorphism in rock from the Steen River Structure, Alberta. Pp. 367378 in French, B. M. and Short, N. M., eds. Shock metamorphism of natural materials. Mono Book Corporation, Baltimore.Google Scholar
Chenet, A. L., Fluteau, F., and Courtillot, V. 2005. Modeling massive sulphate aerosol pollution following large 1783 Laki basaltic eruption. Earth and Planetary Science Letters 236:721731.CrossRefGoogle Scholar
Cohen, J. M., and Hallam, A. 1989. The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Philosophical Transactions of the Royal Society of London B Biological Sciences 325:437455.Google Scholar
Corner, B., Reimold, W. U., Brandt, D., and Koeberl, C. 1997. Morokweng impact structure, Northwest Province, South Africa: Geophysical imaging and shock petrographic studies. Earth and Planetary Science Letters 146:351364.CrossRefGoogle Scholar
Dence, M. R. 1964. A comparative structural and petrographic study of probable Canadian meteorite craters. Meteoritics 2:249270.CrossRefGoogle Scholar
D'Hondt, S., Herbert, T. D., King, J., and Gibson, C. 1996. Planktonic foraminifera, asteroids, and marine production; death and recovery at the Cretaceous-Tertiary boundary. In Ryder, G., Fastovsky, D., and Gartner, S., eds. The Cretaceous-Tertiary event and other catastrophes in earth history. Geological Society of America Special Paper 307:303317.Google Scholar
D'Hondt, S., Donaghay, P., Zachos, J. C., Luttenberg, D., and Lindinger, M. 1998. Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction. Science 282:276279.CrossRefGoogle ScholarPubMed
Dolbeth, M., Cardoso, P. G., Ferreira, S., Verdelhos, M. T., Raffaelli, D., and Pardal, M. A. 2007. Anthropogenic and natural disturbance effects on a macrobenthic estuarine community over a 10-year period. Marine Pollution Bulletin 54:576585.CrossRefGoogle Scholar
Dott, R. H. 1983. Itching eyes and dinosaur demise. Geology 11:126.2.0.CO;2>CrossRefGoogle Scholar
Dypvik, H., Gudlaugsson, S. T., Tsikalas, F., Attrep, M., Ferrell, R. E., Krinsley, D. H., Mork, A., Faleide, J. I., and Nagy, J. 1996. Mj⊘linir structure: an impact crater in the Barents Sea. Geology 24:779782.2.3.CO;2>CrossRefGoogle Scholar
Eldholm, O., and Coffin, M. F. 2000. Large igneous provinces and plate tectonics. In Richards, M., Gordon, R., and Van der Hilst, R., eds. The history and dynamics of global plate motions. American Geophysical Union Geophysical Monograph 121:309326.Google Scholar
Elias, R., Palacios, J. R., Rivero, M. S., and Vallarino, E. A. 2005. Short-term responses to sewage discharge and storms of subtidal sand-bottom macrozoobenthic assemblages off Mar del Plata City, Argentina (SW Atlantic). Journal of Sea Research 53:231242.CrossRefGoogle Scholar
Embry, A. F., and Osadetz, K. G. 1988. Stratigraphy and tectonic significance of Cretaceous volcanism in Queen Elizabeth Islands, Canadian Arctic Archipelago. Canadian Journal of Earth Sciences 25:12091219.CrossRefGoogle Scholar
Ernst, R. E., and Buchan, K. L. 1997. Giant radiating dyke swarms: their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. Pp. 297333 in Mahoney, and Coffin, 1997.Google Scholar
Ernst, R. E., and Buchan, K. L. 2001. Large mafic magmatic events through time and links to mantle-plume heads. In Ernst, R. E. and Buchan, K. L., eds. Mantle plumes: their identification through time. Geological Society of America Special Paper 352:483575.Google Scholar
Erwin, D. H. 1996. Understanding biotic recoveries: extinction, survival, and preservation during the end-Permian mass extinction. Pp. 398418 in Jablonski, D., Erwin, D. H., and Lipps, J., eds. Evolutionary paleobiology. University of Chicago Press, Chicago.Google Scholar
Erwin, D. H. 2001. Lessons from the past: biotic recoveries from mass extinctions. Proceedings of the National Academy of Sciences USA 98:5399–4503.CrossRefGoogle ScholarPubMed
Feldman, V. I., Granovskiy, L. B., Kapustkina, I. G., Karotayeva, N. N., Sazonova, L. V., and Dabizha, A. I. 1981. The El'gygytgyn meteor crater. Pp. 7092 in Marakushev, A. A., ed. Impactites. Moscow University Press, Moscow.Google Scholar
Foote, M. 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Geology 111:125148.CrossRefGoogle Scholar
Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31:620.2.0.CO;2>CrossRefGoogle Scholar
Foote, M. 2007. Extinction and quiescence in marine animal genera. Paleobiology 33:261272.CrossRefGoogle Scholar
Fornaciari, E., Giusberti, L., Luciani, V., Tateo, F., Agnini, C., Backman, J., Oddone, M., and Rio, D. 2007. An expanded Cretaceous-Tertiary transition in a pelagic setting of the southern Alps (central-western Tethys). Palaeogeography, Palaeoclimatology, Palaeoecology 255:98131.CrossRefGoogle Scholar
George, R., Rogers, N., and Kelly, S. 1998. Earliest magmatism in Ethiopia: evidence for two mantle plumes in one flood basalt province. Geology 26:923926.2.3.CO;2>CrossRefGoogle Scholar
Glikson, A. Y. 2005. Asteroid/comet impact clusters, flood basalts and mass extinctions: significance of isotopic age overlaps, discussion. Earth and Planetary Science Letters 236:933937.CrossRefGoogle Scholar
Gostin, V. A., and Therriault, A. M. 1997. Tookoonooka, a large buried early Cretaceous impact structure in the Eromanga Basin of southwestern Queensland, Australia. Meteoritics and Planetary Science 32:593599.CrossRefGoogle ScholarPubMed
Gradstein, F. M., Ogg, J. G., and Smith, A. G. 2005. A geologic time scale 2004. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Grieve, R. A. F. 1991. Terrestrial impact: the record in the rocks. Meteoritics 26:175194.CrossRefGoogle Scholar
Grieve, R. A. F., Reny, G., Gurov, E. P., and Ryabenko, V. A. 1987. The melt rocks of the Boltysh Impact Crater, Ukraine, USSR. Contributions to Mineralogy and Petrology 96:5662.CrossRefGoogle Scholar
Haggerty, B. M. 1996. Episodes of flood-basalt volcanism defined by 40Ar/39Ar age distributions: correlation with mass extinctions? Journal of Undergraduate Research 3:155164.Google Scholar
Hakoyama, H., and Iwasa, Y. 2000. Extinction risk of a density-dependent population estimated from a time series of population size. Journal of Theoretical Biology 204:337359.CrossRefGoogle ScholarPubMed
Hallam, A. 1979. The end of the Cretaceous. Nature 281:430431.CrossRefGoogle Scholar
Hakoyama, H., and Iwasa, Y. 1998. Mass extinctions in Phanerozoic time. In Grady, M. M., Hutchison, R., McCall, G. J. H., and Rothery, D. A., eds. Meteorites: flux with time and impact effects. Geological Society of London Special Publication 140:259274.Google Scholar
Hammerschmidt, K., and Engelhardt, W. 1995. 40Ar/39Ar dating of the Araguainha impact structure, Mato Grosso, Brazil. Meteoritics and Planetary Science 30:227233.CrossRefGoogle Scholar
Hildebrand, A., Penfield, G. T., Kring, D. A., Pilkington, M., Camargo, A., Jacobsen, S. B., and Boynton, W. 1991. Chicxulub Crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology 19:867871.2.3.CO;2>CrossRefGoogle Scholar
Hodge, P. 1994. Meteorite craters and impact structures of the Earth. Cambridge University Press, Cambridge.Google Scholar
Hofmann, C., Courtillot, V., Féraud, G., Rochette, P., Virgu, G., Ketefo, E., and Pik, R. 1997. Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature 389:838841.Google Scholar
Hooper, P. R. 1997. The Columbia River flood basalt province: current status. Pp. 127 in Mahoney, and Coffin, 1997.Google Scholar
House, M. R. 1985. Correlation of mid-Palaeozoic ammonoid evolutionary events with global sedimentary perturbations. Nature 313:1722.CrossRefGoogle Scholar
House, M. R. 2002. Strength, timing, setting and cause of mid-Palaeozoic extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 181:525.CrossRefGoogle Scholar
Huey, R. B., and Ward, P. D. 2005. Hypoxia, global warming, and terrestrial Late Permian extinctions. Science 308:398401.CrossRefGoogle ScholarPubMed
Inchausti, P. 1995. Competition between perennial grasses in a Neotropical savanna: the effects of fire and of hydric-nutritional stress. Journal of Ecology 83:231243.CrossRefGoogle Scholar
Izett, G. A., Cobban, W. A., Obradovich, J. D., and Kunk, M. J. 1993. The Manson impact structure: 40Ar/39Ar age and its distal impact ejecta in the Pierre Shale in Southeastern South Dakota. Science 262:729732.CrossRefGoogle ScholarPubMed
Izokh, E. 1991. Zhamanshin impact crater and tektite problems. Soviet Geology and Geophysics 32:110.Google Scholar
Jablonski, D. 1996. Mass extinctions: persistent problems and new directions. In Ryder, G., Fastovsky, D., and Gartner, S., eds. The Cretaceous-Tertiary event and other catastrophes in earth history. Geological Society of America Special Paper 307:18.CrossRefGoogle Scholar
Jansa, L. F., and Pe-Piper, G. 1987. Identification of an under-water extraterrestrial impact crater. Nature 327:612614.CrossRefGoogle Scholar
Joachimski, M. M., and Buggisch, W. 1993. Anoxic events in the late Frasnian—causes of the Frasnian-Famennian faunal crisis? Geology 22:675678.2.3.CO;2>CrossRefGoogle Scholar
Johnson, K. R. 2002. Megaflora of the Hell Creek and lower Fort Union formations in the western Dakotas: vegetational response to climate change, the Cretaceous-Tertiary boundary event, and rapid marine transgression. In Hartman, J. H., Johnson, K. R., and Nichols, D. J., eds. The Hell Creek Formation and the Cretaceous-Tertiary boundary in the northern Great Plains: an integrated continental record of the end of the Cretaceous. Geological Society of America Special Paper 361:329391.CrossRefGoogle Scholar
Jolley, D. W., and Widdowson, M. 2005. Did Paleogene North Atlantic rift-related eruptions drive Eocene climate cooling? Lithos 79:355366.CrossRefGoogle Scholar
Jones, W. B., Bacon, M., and Hastings, D. A. 1981. The Lake Bosumtwi impact crater, Ghana. Geological Society of America Bulletin 92:342349.2.0.CO;2>CrossRefGoogle Scholar
Jourdan, F., Féraud, G., Bertrand, H., Kampunzu, A. B., Tshoso, G., Watkeys, M. K., and Le Gall, B. 2005. Karoo large igneous province: brevity, origin, and relation to mass extinction questioned by new 40Ar/39Ar data. Geology 33:745748.CrossRefGoogle Scholar
Kavasch, J., and Kavasch, W. D. 1986. The Ries meteorite craters: a geological guide. Ludwig Auer, Donauworth, Germany. Google Scholar
Keller, G. 1988. Extinction, survivorship and evolution of planktonic foraminifera across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Marine Micropaleontology 13:239264.CrossRefGoogle Scholar
Keller, G. 2003. Biotic effects of impacts and volcanism. Earth and Planetary Science Letters 215:249264.CrossRefGoogle Scholar
Keller, G. 2005. Biotic effects of late Maastrichtian mantle plume volcanism: implications for impacts and mass extinctions. Lithos 79:317341.CrossRefGoogle Scholar
Keller, G., Stinnesbeck, W., Adatte, T., Holland, B., Stueben, D., Harting, M., de Leon, C., and de la Cruz, J. 2003. Spherule deposits in Cretaceous-Tertiary boundary sediments in Belize and Guatemala. Journal of the Geological Society, London 160:783795.CrossRefGoogle Scholar
Kent, W., Saunders, A. D., Kempton, P. D., and Ghose, N. C. 1997. Rajmahal basalts, eastern India: mantle sources and melt distribution at a volcanic rifted margin. Pp. 145182 in Mahoney, and Coffin, 1997.Google Scholar
Kiehl, J. T., and Shields, C. A. 2005. Climate simulation of the latest Permian: implications for mass extinction. Geology 33:757760.CrossRefGoogle Scholar
Koeberl, C., and MacLeod, K. G., eds. 2002. Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America Special Paper 356.Google Scholar
Koeberl, C., Sharpton, V., Murali, A. V., and Burke, K. 1990. Kara and Ust-Kara impact structures (USSR) and their relevance to the K/T boundary event. Geology 18:5053.2.3.CO;2>CrossRefGoogle Scholar
Koeberl, C., Poag, C. W., Reimold, W. U., and Brandt, D. 1996. Impact origin of Chesapeake Bay structure and the source of the North American tektites. Science 271:12631266.CrossRefGoogle Scholar
Kump, L. R., Pavlov, A., and Arthur, M. A. 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33:397400.CrossRefGoogle Scholar
Lambert, P. 1977. Rochechouart impact crater: statistical geochemical investigations and meteoritic contamination. Pp. 449460 in Roddy, D. J., Pepin, R. O., and Merrill, R. B., eds. Impact and explosion cratering. Pergamon, New York.Google Scholar
Lane, A., Janis, C. M., and Sepkoski, J. J. Jr. 2005. Estimating paleodiversities: a test of the taxic and phylogenetic methods. Paleobiology 31:2134.2.0.CO;2>CrossRefGoogle Scholar
Larsen, L. M., Rex, D. C., Watt, W. S., and Guise, P. G. 1999. 40Ar-39Ar dating of alkali basaltic dykes along the southwest coast of Greenland: Cretaceous and Tertiary igneous activity along the eastern margin of the Labrador Sea. Geology of Greenland Survey Bulletin 184:1929.Google Scholar
Lilley, S. A., and Schiel, D. R. 2006. Community effects following the deletion of a habitat-forming alga from rocky marine shores. Oecologia 148:672681.CrossRefGoogle ScholarPubMed
Lottig, N. R., Valett, H. M., Schreiber, M. E., and Webster, J. R. 2007. Flooding and arsenic contamination: influences on ecosystem structure and function in an Appalachian headwater stream. Limnology and Oceanography 52:19912001.CrossRefGoogle Scholar
MacLeod, N. 2004. Identifying Phanerozoic extinction controls: statistical considerations and preliminary results. In Alwynne, B. Beaudoin and Martin, J. Head, eds. The palynology and micropalaeontology of boundaries. Geological Society of London Special Publication 230:1133.CrossRefGoogle Scholar
Mahoney, J. J., and Coffin, M. F., eds. 1997. Large igneous provinces: continental, oceanic, and planetary flood volcanism. American Geophysical Union Geophysical Monograph 100.Google Scholar
Mann, H. B., and Whitney, D. R. 1947. On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18:5060.CrossRefGoogle Scholar
Marsh, J. S., Hooper, P. R., Rehacek, J., Duncan, R. A., and Duncan, A. R. 1997. Stratigraphy and age of Karoo basalts of Lesotho and implications for correlations within the Karoo igneous province. Pp. 247272 in Mahoney, and Coffin, 1997.Google Scholar
Marshall, N. A., and Bailey, P. C. E. 2004. Impact of secondary salinisation on freshwater ecosystems: effects of contrasting, experimental, short-term releases of saline wastewater on macroinvertebrates in a lowland stream. Marine and Freshwater Research 55:509523.CrossRefGoogle Scholar
Marzoli, A., Melluso, L., Morra, V., Renne, P. R., Sgrosso, I., D'Antonio, M., Morais, L. Duarte, Morais, E. A. A., and Ricci, G. 1999a. Geochronology and petrology of Cretaceous basaltic magmatism in the Kwanza basin (western Angola), and relationships with the Paraná-Etendeka continental flood basalt province. Journal of Geodynamics 28:341356.CrossRefGoogle Scholar
Marzoli, A., Renne, P. R., Piccirillo, E. M., Ernesto, M., Bellieni, G., and De Min, A. 1999b. Extensive 200-million-year-old continental flood basalts of the central Atlantic Magmatic Province. Science 284:616618.CrossRefGoogle Scholar
Masaitis, V. L., and Mashchak, M. S. 1990. Puchezh-Katunki astrobleme: structure of central uplift and transformation of composing rocks. Meteorics 25:383.Google Scholar
Masaitis, V. L., Danilin, A. N., Karpov, G. M., and Raykhlin, A. I. 1976. Karla, Obolon, and Rotmistrovka astroblemes in the European part of the USSR. Doklady Earth Science 230:4851.Google Scholar
May, R. M., Lawton, J. H., and Stork, N. E. 1995. Assessing extinction rates. Pp. 124 in Lawton, J. H. and May, R. M., eds. Extinction rates. Oxford University Press, Oxford, England. Google Scholar
McElwain, J. C., Beerling, D. J., and Woodward, F. I. 1999. Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:13861390.CrossRefGoogle ScholarPubMed
McGhee, G. R. 1996. The Late Devonian mass extinction: the Frasnian/Famennian crisis. Columbia University Press, New York.Google Scholar
McHugh, C. M. G., Snyder, S. W., and Miller, K. G. 1998. Upper Eocene ejecta of the New Jersey continental margin reveal dynamics of the Chesapeake Bay impact. Earth and Planetary Science Letters 160:353367.CrossRefGoogle Scholar
Melosh, H. J. 1989. Impact cratering: a geologic process. Oxford University Press, New York.Google Scholar
Menzies, M., Baker, J., Chazot, G., and Al'Kadasi, M. 1997. Evolution of the Red Sea volcanic margin, western Yemen. Pp. 2943 in Mahoney, and Coffin, 1997.Google Scholar
Milton, D. J., and Sutter, J. F. 1987. Revised age for the Gosses Bluff impact structure, Northern Territory, Australia, based on 40Ar/39Ar dating. Meteoritics 22:281289.CrossRefGoogle Scholar
Milton, D. J., Barlow, B. C., Brett, R., Brown, A. Y., Glikson, A. Y., Manwaring, E. A., Moss, F. J., Sedmik, E. C. E., Van Son, J., and Young, G. A. 1972. Gosses Bluff impact structure, Australia. Science 175:11991207.CrossRefGoogle ScholarPubMed
Mohiuddin, M. M., Nishimura, A., and Tanaka, Y. 2005. Seasonal succession, vertical distribution, and dissolution of planktonic foraminifera along the Subarctic Front; implications for paleoceanographic reconstruction in the northwestern Pacific. Marine Micropaleontology 55:129156.CrossRefGoogle Scholar
Morello, E. B., Froglia, C., Atkinson, R. J. A., and Moore, P. G. 2005. Impacts of hydraulic dredging on a macrobenthic community of the Adriatic Sea, Italy. Canadian Journal of Fisheries and Aquatic Sciences 62:20762087.CrossRefGoogle Scholar
Muller, N., Hartung, J., Jessberger, E., and Reimold, W. U. 1990. 40Ar/39Ar ages of Dellen, Janisjarvi and Saaksjarvi impact craters. Meteoritics 25:110.CrossRefGoogle Scholar
Nelson, C. R., Halpern, C. B., and Antos, J. A. 2007. Variation in responses of late-seral herbs to disturbance and environmental stress. Ecology 88:28802890.CrossRefGoogle ScholarPubMed
Nielsen, T. F. D. 1987. Mafic dyke swarms in Greenland: a review. In Halls, H. C. and Fahrig, W. F., eds. Mafic dyke swarms. Geological Association of Canada Special Paper 34:349360.Google Scholar
Norris, R. D., Kroon, D., Huber, B. T., and Erbacher, J. 2001. Cretaceous-Palaeogene ocean and climate change in the subtropical North Atlantic. In Kroon, D., Norris, R. D., and Klaus, A., eds. Western North Atlantic Palaeogene and Cretaceous palaeoceanography. Geological Society of America Special Paper 183:122.CrossRefGoogle Scholar
Olsen, P. E., Kent, D. V., Sues, H. D., Koeberl, C., Huber, H., Montanari, A., Rainforth, E. C., Fowell, S. J., Szajna, M. J., and Jartline, B. W. 2002. Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science 296:13051307.CrossRefGoogle Scholar
Palfy, J., Mortensen, J. K., Carter, E. S., Smith, P. L., Friedman, R. M., and Tipper, H. W. 2000. Timing the end-Triassic mass extinction: on land then in the sea? Geology 28:3942.2.0.CO;2>CrossRefGoogle Scholar
Palfy, J., Smith, P. L., and Mortensen, J. K. 2002. Dating the end-Triassic and Early Jurassic mass extinctions, correlative large igneous provinces, and isotopic events. Pp. 355366 in Koeberl, and MacLeod, 2002.CrossRefGoogle Scholar
Parasiewicz, P. 2007. Using MesoHABSIM to develop reference habitat template and ecological management scenarios. River Research Applications 23:924932.CrossRefGoogle Scholar
Parkyn, S. M., and Collier, K. J. 2004. Interaction of press and pulse disturbance on crayfish populations: food impacts in pasture and forest streams. Hydrobiologia 527:113124.CrossRefGoogle Scholar
Peate, D. W. 1997. The Paraná-Etendeka province. Pp. 217245 in Mahoney, and Coffin, 1997.Google Scholar
Peters, S. E. 2006. Genus extinction, origination, and the durations of sedimentary hiatuses. Paleobiology 32:387407.CrossRefGoogle Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.2.0.CO;2>CrossRefGoogle Scholar
Peters, S. E., and Foote, M. 2002. Determinants of extinction in the fossil record. Nature 416:420424.CrossRefGoogle ScholarPubMed
Pope, K. O., Baines, K. H., Ocampo, A. C., and Ivanov, B. A. 1997. Energy, volatile production, and climate effects of the Chicxulub Cretaceous/Tertiary impact. Journal of Geophysical Research 102:2164521664.CrossRefGoogle ScholarPubMed
Racki, G., and Wrzolek, T. 2001. Causes of mass extinctions. Lethaia 34:200202.CrossRefGoogle Scholar
Rampino, M. R., and Strothers, R. B. 1988. Flood basalt volcanism during the past 250 million years. Science 241:663668.CrossRefGoogle ScholarPubMed
Raup, D. M. 1992. Large-body impact and extinction in the Phanerozoic. Paleobiology 18:8088.CrossRefGoogle ScholarPubMed
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215:15011503.CrossRefGoogle ScholarPubMed
Reimold, W. U. 1982. The Lappajarvi meteorite crater, Finland: petrography, Rb, Sr, major and trace element geochemistry of the impact melt and basement rocks. Geochimica et Cosmochimica Acta 46:12031225.CrossRefGoogle Scholar
Reimold, W. U., Armstrong, R. A., and Koeberl, C. 2002. A deep drill core from the Morokweng impact structure, South Africa: petrography, geochemistry, and constraints on the crater size. Earth and Planetary Science Letters 201:221232.CrossRefGoogle Scholar
Riccardi, A., Kump, L. R., Arthur, M. A., and D'Hondt, S. 2007. Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeography, Palaeoclimatology, Palaeoecology 248:7381.CrossRefGoogle Scholar
Robinson, P. T. 1988. The Haughton impact crater, Devon Island, Canada. Meteoritics 23:181184.Google Scholar
Robinson, P. T., and Grieve, R. A. F. 1975. Impact structures in Canada: their recognition and characteristics. Journal of the Royal Astronomical Society of Canada 69:120.Google Scholar
Rohde, R. A., and Muller, R. A. 2005. Cycles in fossil diversity. Nature 434:208210.CrossRefGoogle ScholarPubMed
Roopnarine, P. D. 2006. Extinction cascades and catastrophe in ancient food webs. Paleobiology 32:119.CrossRefGoogle Scholar
Sandberg, C. A., Morrow, J. R., and Ziegler, W. 2002. Late Devonian sea-level changes, catastrophic events, and mass extinctions. Pp. 473487 in Koeberl, and MacLeod, 2002.Google Scholar
Sander, G. W., Overton, A., and Bataille, R. D. 1963. Seismic and magnetic investigation of the Deep Bay Crater. Journal of the Royal Astronomical Society of Canada 58:16.Google Scholar
Saunders, A. D., Fitton, J. G., Kerr, A. C., Norry, M. J., and Kent, R. W. 1997. The North Atlantic igneous province. Pp. 4593 in Mahoney, and Coffin, 1997.Google Scholar
Sawatzky, H. B. 1977. Buried impact craters in the Williston Basin and adjacent areas. Pp. 461480 in Roddy, D. J., Pepin, R. O., and Merrill, R. B., eds. Impact and explosion cratering: planetary and terrestrial implications. Pergamon, Oxford.Google Scholar
Scheibling, R. E., and Gagnon, P. 2006. Competitive interactions between the invasive green alga Codium fragile ssp. tomentosoides and native canopy-forming seaweeds in Nova Scotia (Canada). Marine Ecology Progress Series 325:114.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981. The uniqueness of the Cambrian fauna. In Taylor, M. E., ed. Short Papers for the Second International Symposium on the Cambrian System. U.S. Geological Survey Open-File Report:203207.Google Scholar
Sepkoski, J. J. Jr. 1993. Ten years in the library: new data confirm paleontological patterns. Paleobiology 19:4351.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 2002. Compendium of fossil marine animal diversity. Bulletins of American Paleontology 363:1560.Google Scholar
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic benthic communities in space and time. Pp. 153190 in Valentine, J. W., ed. Phanerozoic diversity patterns. Princeton University Press, Princeton, N.J. Google Scholar
Sepkoski, J. J. Jr., McKinney, F. K., and Lidgard, S. 2000. Competitive displacement among post-Paleozoic cyclostome and cheilostome bryozoans. Paleobiology 26:718.2.0.CO;2>CrossRefGoogle ScholarPubMed
Sheehan, P. M. 2001. The Late Ordovician mass extinction. Annual Review of Earth and Planetary Sciences 29:331364.CrossRefGoogle Scholar
Shen, S. Z., and Shi, G. R. 2002. Paleobiogeographical extinction patterns of Permian brachiopods in the Asian-western Pacific region. Paleobiology 28:449463.Google Scholar
Signor, P., and Lipps, J. H. 1982. Sampling bias, gradual extinction patterns, and catastrophes in the fossil record. Geological Society of America Special Paper 190:291296.CrossRefGoogle Scholar
Silver, P. G., Behn, M. D., Kelley, K., Schmitz, M., and Savage, B. 2006. Understanding cratonic flood basalts. Earth and Planetary Science Letters 245:190201.CrossRefGoogle Scholar
Smith, A. B. 2001. Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philosophical Transactions of the Royal Society of London B 356:351367.CrossRefGoogle ScholarPubMed
Stanley, S. M., and Yang, X. 1994. A double mass extinction at the end of the Paleozoic era. Science 266:13401344.CrossRefGoogle ScholarPubMed
Stearns, R. G., Wilson, C. W., Tiedemann, H. A., Wilcox, J. T., and Marsh, P. S. 1968. The Wells Creek structure, Tennessee. Pp. 323338 in French, B. and Short, N. M., eds. Shock metamorphism of natural materials. Mono Book Corporation, Baltimore.Google Scholar
Storey, B. C., Leat, P. T., Weaver, S. D., Pankhurst, R. J., Bradshaw, J. D., and Kelly, S. 1999. Mantle plumes and Antarctica-New Zealand rifting: evidence from mid-Cretaceous mafic dykes. Journal of the Geological Society, London 156:659671.CrossRefGoogle Scholar
Storey, M., Mahoney, J. J., and Saunders, A. D. 1997. Cretaceous basalts in Madagascar and the transition between plume and continental lithosphere mantle sources. Pp. 95122 in Mahoney, and Coffin, 1997.Google Scholar
Taylor, F. C., and Dence, M. R. 1968. A probable meteorite origin for Mistastin Lake, Labrador. Canadian Journal of Earth Sciences 6:3945.CrossRefGoogle Scholar
Taylor, P. D. 2004a. Extinction and the fossil record. Pp. 134 in Taylor, 2004b.Google Scholar
Taylor, P. D. 2004b. Extinctions in the history of life. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Toon, O. B., Zahnle, K., Morrison, D., Turco, R. P., and Covey, C. 1997. Environmental perturbations caused by the impacts of asteroids and comets. Reviews of Geophysics 35:4178.CrossRefGoogle Scholar
Tschudy, R. H., Pillmore, C. L., Orth, C. J., Gilmore, C. J., and Knight, J. D. 1984. Disruption of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, Western Interior. Science 225:10301032.CrossRefGoogle ScholarPubMed
Underwood, A. J. 1989. The analysis of stress in natural populations. Pp. 5178 in Calow, P. and Berry, R., eds. Evolution, ecology and environmental stress. Academic Press, London.Google Scholar
Underwood, A. J. 1994. On beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecological Applications 4:315.CrossRefGoogle Scholar
Vijda, V., Raine, J. I., and Hollis, C. J. 2001. Indication of global deforestation at the Cretaceous-Tertiary boundary by New Zealand fern spike. Science 294:17001702.CrossRefGoogle Scholar
Wang, S. C., and Everson, P. J. 2007. Confidence intervals for pulsed mass extinction events. Paleobiology 33:324336.CrossRefGoogle Scholar
White, R. V., and Saunders, A. D. 2005. Volcanism, impact and mass extinctions: incredible or credible coincidences? Lithos 79:299316.CrossRefGoogle Scholar
Wignall, P. B. 2001. Large igneous provinces and mass extinctions. Earth Science Reviews 53:133.CrossRefGoogle Scholar
Wignall, P. B. 2004. Causes of mass extinctions. Pp. 119150 in Taylor, 2004b.Google Scholar
Zoback, M. L., McKee, E. H., Blakely, R. J., and Thompson, G. A. 1994. The northern Nevada rift: Regional tectono-magmatic relations and Middle Miocene stress direction. Geological Society of America Bulletin 106:371382.2.3.CO;2>CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 22 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Press-pulse: a general theory of mass extinction?
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Press-pulse: a general theory of mass extinction?
Available formats