Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T15:39:51.190Z Has data issue: false hasContentIssue false

Jaw movement, dental function, and diet in the Paleocene multituberculate Ptilodus

Published online by Cambridge University Press:  08 February 2016

David W. Krause*
Affiliation:
Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan 48109

Abstract

The shape and arrangement of cusps and crests and the orientation of wear striations on the cheek teeth of fossil mammals can be used to reconstruct occlusal patterns. Occlusal patterns have been documented previously in a variety of therian mammals and also in triconodonts and docodonts among nontherians. This is the first detailed analysis of patterns of jaw movement and dental function in a member of the highly specialized nontherian order Multituberculata (Allotheria). Ptilodus, a Paleocene multituberculate, appears to have had two cycles of mastication that followed different paths of movement and utilized different sets of teeth. The first cycle, the slicing-crushing cycle, occurred as the large, laterally-compressed fourth lower premolar (P4) sliced orthally into food items held primarily against the fourth upper premolar (P4). Food items sliced in this manner passed down both the labial and lingual sides of P4, forming subparallel striations in valleys between the nearly vertical enamel ridges. The second cycle is the grinding cycle in which the mandible was retracted while the molars were in tight occlusion, thus producing longitudinal striations on the molars. Unlike the pattern in therians, triconodonts, and docodonts, there is no transversely triangular masticatory orbit in the grinding cycle of multituberculates. The generally accepted idea that the labial aspect of P4 in ptilodontoid multituberculates sheared orthally against the lingual aspect of P4 is not supported. Instead, predominantly horizontal striations developed on the posterolabial wear facet of P4, and on a conjoined facet posterolingually on P4 and anterolingually on the first upper molar (M1), indicate that relative movement between these surfaces was largely palinal (i.e., the jaw moved from front to back), rather than orthal and occurred during the grinding cycle of mastication.

In considering the dietary preferences of ptilodontoid multituberculates, it appears that most members were not folivorous. The small size of many species of Ptilodontoidea suggests that they could not have subsisted on a folivorous diet, which is rich in structural carbohydrates. The length of striations on the sides of P4 of Ptilodus, one of the largest of the Ptilodontoidea, indicates that large, hard food items were ingested. The presence of both smooth and highly-striated enamel on homologous dental wear facets in different individuals of Ptilodus mediaevus from a single quarry sample suggests a varied diet. The recent suggestion that ptilodontoids were omnivorous is supported.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abel, O. 1912. Grundzüge der Palaeobiologie der Wirbeltiere. 708 pp. E. Schweizerbart (Nägale); Stuttgart, West Germany.Google Scholar
Bock, W. J. 1977. Adaptation and the comparative method. Pp. 5782. In: Hecht, M. K., Goody, P. C., and Hecht, B. M., eds. Major Patterns in Vertebrate Evolution. Plenum Press; New York, New York.CrossRefGoogle Scholar
Boyd, C. E. and Goodyear, C. P. 1971. Nutritive quality of food in ecological systems. Arch. Hydrobiol. 69:256270.Google Scholar
Butler, P. M. 1952. The milk-molars of Perissodactyla, with remarks on molar occlusion. Proc. Zool. Soc. Lond. 121:777817.CrossRefGoogle Scholar
Butler, P. M. 1972. Some functional aspects of molar evolution. Evolution. 26:474483.CrossRefGoogle ScholarPubMed
Butler, P. M. 1974. A zoologist looks at occlusion. Br. J. Orthodont. 1:205212.CrossRefGoogle ScholarPubMed
Christensen, P. E. S. 1980. The biology of Bettongia penicillata and Macropus eugenii in relation to fire. Bull. For. Dep. West. Aust. 91:190.Google Scholar
Clemens, W. A. 1963. Fossil mammals of the type Lance Formation, Wyoming. Part I. Introduction and Multituberculata. Univ. Calif. Publ. Geol. Sci. 48:1105.Google Scholar
Clemens, W. A. and Kielan-Jaworowska, Z. 1979. Multituberculata. Pp. 99149. In: Lillegraven, J. A., Kielan-Jaworowska, Z., and Clemens, W. A., eds. Mesozoic Mammalia: the First Two-thirds of Mammalian History. Univ. California Press; Berkeley, California.Google Scholar
Collins, L. R. 1973. Monotremes and marsupials, a reference for zoological institutions. Smithson. Inst. Publ. 4888:1323.Google Scholar
Cope, E. D. 1889. The mechanical causes of the development of the hard parts of the Mammalia. J. Morphol. 3:137277.CrossRefGoogle Scholar
Costa, R. L. Jr. and Greaves, W. S. 1981. Experimentally produced tooth wear facets and the direction of jaw motion. J. Paleontol. 55:635638.Google Scholar
Covert, H. H. and Kay, R. F. 1981. Dental microwear and diet: implications for determining the feeding behaviours of extinct primates, with a comment on the dietary pattern of Sivapithecus. Am. J. Phys. Anthropol. 55:331336.CrossRefGoogle ScholarPubMed
Crompton, A. W. 1974. The dentitions and relationships of the southern African Triassic mammals, Erythrotherium parringtoni and Megazostrodon rudnerae. Bull. Brit. Mus. (Nat. Hist.) 24:397437.Google Scholar
Crompton, A. W. and Hiiemae, K. M. 1970. Functional occlusion and mandibular movements during occlusion in the American opossum, Didelphis marsupialis L. Zool. J. Linn. Soc. 49:2147.CrossRefGoogle Scholar
Crompton, A. W. and Jenkins, F. A. Jr. 1968. Molar occlusion in Late Triassic mammals. Biol. Rev. 43:427458.CrossRefGoogle ScholarPubMed
Crompton, A. W. and Jenkins, F. A. Jr. 1973. Mammals from reptiles: a review of mammalian origins. Annu. Rev. Earth Plan. Sci. 1:131154.CrossRefGoogle Scholar
Crompton, A. W. and Kielan-Jaworowska, Z. 1978. Molar structure and occlusion in Cretaceous therian mammals. Pp. 249287. In: Butler, P. M. and Joysey, K. A., eds. Development, Function, and Evolution of Teeth. Academic Press; New York, New York.Google Scholar
Crompton, A. W. and Sita-Lumsden, A. 1970. Functional significance of the therian molar pattern. Nature. 227:197199.CrossRefGoogle ScholarPubMed
Dimpel, H. and Calaby, J. H. 1972. Further observations on the Mountain Pigmy Possum (Burramys parvus). Victorian Nat. 89:101106.Google Scholar
Eisenberg, J. F. 1978. The evolution of arboreal herbivores in the Class Mammalia. Pp. 135152. In: Montgomery, G. G., ed. The Ecology of Arboreal Folivores. Smithsonian Institution Press; Washington, D.C.Google Scholar
Falconer, H. 1857. Description of two species of the fossil mammalian genus Plagiaulax from Purbeck. Q. J. Geol. Soc. 13:261282.CrossRefGoogle Scholar
Fisher, D. C. 1979. Evidence for subaerial activity of Euproops danae (Merostomata, Xiphosuridae). Pp. 379447. In: Nitecki, M. H., ed. Mazon Creek Fossils. Academic Press; New York, New York.CrossRefGoogle Scholar
Fleagle, J. G. 1978. Size distributions of living and fossil primate faunas. Paleobiology. 4:6776.CrossRefGoogle Scholar
Gidley, J. W. 1909. Notes on the fossil mammalian genus Ptilodus, with descriptions of new species. Proc. U.S. Natl. Mus. 36:611626.CrossRefGoogle Scholar
Gingerich, P. D. 1972. Molar occlusion and jaw mechanics of the Eocene primate Adapis. Am. J. Phys. Anthropol. 36:359368.CrossRefGoogle ScholarPubMed
Gingerich, P. D. 1973. Molar occlusion and function in the Jurassic mammal Docodon. J. Mammal. 54:10081013.CrossRefGoogle ScholarPubMed
Gingerich, P. D. 1974. Function of pointed premolars in Phenacolemur and other mammals. J. Dent. Res. 53:497.CrossRefGoogle ScholarPubMed
Gingerich, P. D. 1977. Patterns of evolution in the mammalian fossil record. Pp. 469500. In: Hallam, A., ed. Patterns of Evolution. Elsevier Scientific Publishing Co.; Amsterdam, The Netherlands.Google Scholar
Greaves, W. S. 1973. The inference of jaw motion from tooth wear facets. J. Paleontol. 47:10001001.Google Scholar
Hahn, G. 1969. Beiträge zur Fauna der Grube Guimarota Nr. 3. Die Multituberculata. Palaeontographica, Abt. A. 133:1100.Google Scholar
Hahn, G. 1971. The dentition of the Paulchoffatiidae (Multituberculata, Upper Jurassic). Memoria dos Servicos Geologicos de Portugal. 17:139.Google Scholar
Hahn, G. 1977. Neue Schädel-Reste von Multituberculaten (Mamm.) aus dem Malm Portugals. Geologica et Palaeontologica. 11:161186.Google Scholar
Hahn, G. 1978. Die Multituberculata, eine fossile Saugetiere-Ordnung. Sonderbd. naturwiss. Ver. Hamburg. 3:6195.Google Scholar
Hamilton, W. J. III. 1962. Reproductive adaptations of the red tree mouse. J. Mammal. 43:486504.CrossRefGoogle Scholar
Hiiemae, K. M. 1976. Masticatory movements in primitive mammals. Pp. 105118. In: Anderson, D. J. and Matthews, B., eds. Mastication. John Wright and Sons Limited; Bristol, England.Google Scholar
Hiiemae, K. M. 1978. Mammalian mastication: a review of the activity of the jaw muscles and the movements they produce in chewing. Pp. 359398. In: Butler, P. M. and Joysey, K. A.Development, Function and Evolution of Teeth. Academic Press; New York, New York.Google Scholar
Hiiemae, K. M. and Ardran, G. M. 1968. A cinefluorographic study of mandibular movement during feeding in the rat (Rattus norvegicus). J. Zool, Lond. 154:139154.CrossRefGoogle Scholar
Hiiemae, K. M. and Crompton, A. W. 1971. A cinefluorographic study of feeding in the American opossum, Didelphis marsupialis. Pp. 299334. In: Dahlberg, A. A., ed. Dental Morphology and Evolution. Univ. Chicago Press; Chicago, Illinois.Google Scholar
Jenkins, F. A. Jr. 1969. Occlusion in Docodon (Mammalia, Docodonta). Postilla. 139:124.Google Scholar
Jerison, H. J. 1973. Evolution of the Brain and Intelligence. 482 pp. Academic Press; New York, New York.Google Scholar
Johnson, P. M. 1980. Observations of the behaviour of the rufous rat-kangaroo, Aepyprymnus rufescens in captivity. Aust. Wildl. Res. 7:347358.CrossRefGoogle Scholar
Kay, R. F. 1975. The functional adaptations of primate molar teeth. Am. J. Phys. Anthropol. 43:195216.CrossRefGoogle ScholarPubMed
Kay, R. F. 1978. Molar structure and diet in extant Cercopithecidae. Pp. 309339. In: Butler, P. M. and Joysey, K. A., eds. Development, Function and Evolution of Teeth. Academic Press; New York, New York.Google Scholar
Kay, R. F. and Hiiemae, K. M. 1974. Jaw movement and tooth use in Recent and fossil primates. Am. J. Phys. Anthropol. 40:227256.CrossRefGoogle ScholarPubMed
Kay, R. F. and Hylander, W. L. 1978. The dental structure of mammalian folivores with special reference to Primates and Phalangeroidea (Mammalia). Pp. 173191. In: Montgomery, G. G., ed. The Biology of Arboreal Folivores. Smithsonian Inst. Press; Washington, D.C.Google Scholar
Kirsch, J. A. W. 1977. The six-percent solution: second thoughts on the adaptedness of the Marsupialia. Am. Sci. 65:276288.Google ScholarPubMed
Krause, D. W. 1977. Paleocene multituberculates (Mammalia) of the Roche Percée local fauna, Ravenscrag Formation, Saskatchewan, Canada. Palaeontographica, Abt. A. 159:136.Google Scholar
Krause, D. W. 1982. Evolutionary history and paleobiology of early Cenozoic Multituberculata (Mammalia), with emphasis on the Family Ptilodontidae. Unpublished Ph.D. dissertation. 555 pp. Univ. Mich.Google Scholar
Krause, D. W. and Jenkins, F. A. Jr.In press. The postcranial skeleton of North American multituberculates. Bull. Mus. Comp. Zool. (Harvard).Google Scholar
Krusat, G. 1980. Haldanodon exspectatus Kuhne & Krusat 1972 (Mammalia, Docodonta). Memorias dos Servicos Geologicos de Portugal. 27:179.Google Scholar
Mills, J. R. E. 1955. Ideal dental occlusion in the primates. The Dental Practitioner. 6:4761.Google Scholar
Mills, J. R. E. 1971. The dentition of Morganucodon. Pp. 2963. In: Kermack, D. M. and Kermack, K. A., eds. Early Mammals. Academic Press; New York, New York.Google Scholar
Musser, G. G. 1972. The species of Hapalomys (Rodentia, Muridae). Am. Mus. Novitates. 2503:127.Google Scholar
Owen, R. 1861. Paleontology, or a Systematic Summary of Extinct Animals and Their Geological Relations. 463 pp. Adam and Charles Black; Edinburgh, Scotland.CrossRefGoogle Scholar
Parker, P. J. 1977. Aspects of the biology of Bettongia penicillata. Unpublished Ph.D. dissertation. 222 pp. Yale Univ.Google Scholar
Rensberger, J. M. 1973. An occlusion model for mastication and dental wear in herbivorous mammals. J. Paleontol. 47:515528.Google Scholar
Ride, W. D. L. 1970. A Guide to the Native Mammals of Australia. 249 pp. Oxford Univ. Press; Oxford, England.Google Scholar
Rigby, J. K. Jr. 1980. Swain Quarry of the Fort Union Formation, middle Paleocene (Torrejonian), Carbon County, Wyoming: geologic setting and mammalian fauna. Evol. Monogr. 3:1179.Google Scholar
Sampson, J. C. 1971. The biology of Bettongia penicillata Gray, 1837. Unpublished Ph.D. dissertation. Univ. Western Australia.Google Scholar
Schlager, F. E. 1981. Evaluation of factors influencing status and distribution of the rufous bettong, Aepyprymnus rufescens, in New South Wales. Bull. Aust. Mammal. Soc. 7:158.Google Scholar
Simpson, G. G. 1926. Mesozoic Mammalia. IV. The multituberculates as living animals. Am. J. Sci. 11:228250.CrossRefGoogle Scholar
Simpson, G. G. 1928. A Catalogue of the Mesozoic Mammalia in the Geological Department of The British Museum. 215 pp. William Clowes & Sons, Limited; London, England.Google Scholar
Simpson, G. G. 1933. The “plagiaulacoid” type of mammalian dentition. J. Mammal. 14:97107.CrossRefGoogle Scholar
Simpson, G. G. 1937a. Skull structure of the Multituberculata. Bull. Am. Mus. Nat. Hist. 73:727763.Google Scholar
Simpson, G. G. 1937b. The Fort Union of the Crazy Mountain Field, Montana and its mammalian faunas. U.S. Natl. Mus. Bull. 169:1287.CrossRefGoogle Scholar
Sloan, R. E. 1979. Multituberculata. Pp. 492498. In: Fairbridge, R. W. and Jablonski, D., eds. The Encyclopedia of Paleontology. Dowden, Hutchinson & Ross, Inc.; Stroudsberg, Pennsylvania.CrossRefGoogle Scholar
Troughton, E. 1962. Furred Animals of Australia. 376 pp. Angus and Robertson; Sydney, Australia.Google Scholar
Van Valen, L. 1966. Deltatheridia, a new order of mammals. Bull. Am. Mus. Nat. Hist. 132:1126.Google Scholar
Van Valen, L. and Sloan, R. E. 1966. The extinction of the multituberculates. Syst. Zool. 15:261278.CrossRefGoogle Scholar
Walker, A., Hoeck, H. N., and Perez, L. 1978. Microwear of mammalian teeth as an indicator of diet. Science. 201:908910.CrossRefGoogle ScholarPubMed
Weijs, W. A. 1975. Mandibular movements of the albino rat during feeding. J. Morphol. 154:107124.CrossRefGoogle Scholar