Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-21T02:23:51.382Z Has data issue: false hasContentIssue false

Drilling predation increased in response to changing environments in the Caribbean Neogene

Published online by Cambridge University Press:  03 May 2016

Jill S. Leonard-Pingel
Affiliation:
Geoscience Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093, U.S.A. E-mail: leonard-pingelj@wlu.edu.
Jeremy B. C. Jackson
Affiliation:
Geoscience Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093, U.S.A. Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20013, U.S.A. Smithsonian Tropical Research Institute, Post Office Box 0843-03093, Balboa, Panama

Abstract

Changes in the physical environment are major drivers of evolutionary change, either through direct effects on the distribution and abundance of species or more subtle shifts in the outcome of biological interactions. To investigate this phenomenon, we built a fossil data set of drilling gastropod predation on bivalve prey for the last 11 Myr to determine how the regional collapse in Caribbean upwelling and planktonic productivity affected predator–prey interactions. Contrary to theoretical expectations, predation increased nearly twofold after productivity declined, while the ratio of drilling predators to prey remained unchanged. This increase reflects a gradual, several-fold increase in the extent of shallow-water coral reefs and seagrass meadows in response to the drop in productivity that extended over several million years. Drilling predation is uniformly higher in biogenic habitats than in soft sediments. Thus, changes in predation intensity were driven by a shift in dominant habitats rather than a direct effect of decreased productivity. Most previous analyses of predation through time have not accounted for variations in environmental conditions, raising questions about the patterns observed. More fundamentally, however, the consequences of large-scale environmental perturbations may not be instantaneous, especially when changes in habitat and other aspects of local environmental conditions cause cascading series of effects.

Type
Articles
Copyright
Copyright © 2016 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allen, J. A. 2004. The Recent species of the genera Limatula and Limea (Bivalvia, Limacea) present in the Atlantic, with particular reference to those in deep water. Journal of Natural History 38:25912653.Google Scholar
Allen, J. A., and Turner, J. F.. 1974. On the functional morphology of the family Verticordiidae (Bivalvia) with descriptions of new species from the abyssal Atlantic. Philosophical Transactions of the Royal Society of London B 268:401532.Google Scholar
Allmon, W. D. 2001. Nutrients, temperature, disturbance, and evolution: a model for the late Cenozoic marine record of the western Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 166:926.Google Scholar
Allmon, W. D., Emslie, S. D., Jones, D. S., and Morgan, G. S.. 1996. Late Neogene oceanographic change along Florida’s west coast: evidence and mechanisms. Journal of Geology 104:143162.Google Scholar
Almany, G. R. 2004. Does increased habitat complexity reduce predation and competition in coral reef assemblages? Oikos 106:275284.Google Scholar
Anderson, L. C. 1992. Naticid gastropod predation on corbulid bivalves: effects of physical factors, morphological features, and statistical artifacts. Palaios 7:602620.Google Scholar
Anderson, L. C. 1994. Paleoenvironmental control of species distributions and intraspecific variability in Neogene Corbulidae (Bivalvia: Myacea) of the Dominican Republic. Journal of Paleontology 68:460473.Google Scholar
Arnaud, P. M., Troncoso, J. S., and Ramos, A.. 2001. Species diversity and assemblages of macrobenthic Mollusca from the South Shetland Islands and Bransfield Strait (Antarctica). Polar Biology 24:105112.Google Scholar
Bertness, M. D. 1981. Predation, physical stress, and the organization of a tropical rocky intertidal hermit crab community. Ecology 62:411425.Google Scholar
Bitter-Soto, R. 1999. Benthic communities associated to Thalassia testudinum (Hydrocharitaceae) at three localities of Morrocoy National Park, Venezuela. Revista de Biología Tropical 47:443452.Google Scholar
Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C., and Finnegan, S.. 2013. Climate change and the past, present, and future of biotic interactions. Science 341:499504.Google Scholar
Blois, J. L., Gotelli, N. J., Behrensmeyer, A. K., Faith, J. T., Lyons, S. K., Williams, J. W., Amatangelo, K. L., et al. 2014. A framework for evaluating the influence of climate, dispersal limitation, and biotic interactions using fossil pollen associations across the late Quaternary. Ecography 37:10951108.Google Scholar
Bohannan, B. J. M., and Lenski, R. E.. 2000. The relative importance of competition and predation varies with productivity in a model community. American Naturalist 156:329340.Google Scholar
Britton, J. C. 1972. Two new species and a new subgenus of Lucinidae (Mollusca: Bivalvia), with notes on certain aspects of lucinid phylogeny. Smithsonian Institution Press, Washington, D.C.Google Scholar
Carriker, M. 1981. Shell penetration and feeding by Naticacean and Muricacean predatory gastropods: a synthesis. Malacologia 20:403422.Google Scholar
Case, T. J. 2000. An illustrated guide to theoretical ecology. Oxford University Press, New York.Google Scholar
Chattopadhyay, D., Zuschin, M., and Tomašových, A.. 2014. Effects of a high-risk environment on edge-drilling behavior: inference from Recent bivalves from the Red Sea. Paleobiology 40:3449.Google Scholar
Chinzei, K. 1984. Ecological parallelism in shallow marine benthic associations of Neogene molluscan faunas of Japan. Geobios 17:135143.Google Scholar
Coan, E. V. 1984. The Recent Crassatellinae of the eastern Pacific, with some notes on Crassinella. Veliger 26:158160.Google Scholar
Coates, A. G. 1999. Lithostratigraphy of the Neogene strata of the Caribbean coast from Limon, Costa Rica, to Colon, Panama. Bulletins of American Paleontology 113:1737.Google Scholar
Coates, A. G., and Stallard, R. F.. 2013. How old is the Isthmus of Panama? Bulletin of Marine Science 89:801813.Google Scholar
Coates, A. G., Jackson, J. B. C., Collins, L. S., Cronin, T. M., Dowsett, H. J., Bybell, L. M., Jung, P., and Obando, J. A.. 1992. Closure of the Isthmus of Panama: the near-shore marine record of Costa Rica and western Panama. Geological Society of America Bulletin 104:814828.Google Scholar
Coates, A. G., Collins, L. S., Aubry, M. P., and Berggren, W. A.. 2004. The geology of the Darien, Panama, and the late Miocene–Pliocene collision of the Panama arc with northwestern South America. Geological Society of America Bulletin 116:13271344.Google Scholar
Cronin, T. M. 1991. Pliocene shallow water paleoceanography of the North Atlantic ocean based on marine ostracodes. Quaternary Science Reviews 10:175188.Google Scholar
Cronin, T. M., and Dowsett, H. J.. 1993. Prism: warm waters of the Pliocene. Geotimes 38:1719.Google Scholar
Cronin, T. M., and Dowsett, H. J.. 1996. Biotic and oceanographic response to the Pliocene closing of the Central American Isthmus. Pp. 76104 in J. B. C. Jackson, A. F. Budd, and A. G. Coates, eds. Evolution and environment in tropical America. University of Chicago Press, Chicago.Google Scholar
Dando, P. R., Southward, A. J., Southward, E. C., Terwilliger, N. B., and Terwilliger, R. C.. 1985. Sulfur-oxidizing bacteria and hemoglobin in gills of the bivalve mollusk Myrtea spinifera. Marine Ecology Progress Series 23:8598.Google Scholar
Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., and Mace, G. M.. 2011. Beyond predictions: biodiversity conservation in a changing climate. Science 332:5358.Google Scholar
Díaz, J. M., Escobar, L. A., and Velásquez, L. E.. 1990. Reef associated molluscan fauna of the Santa Marta area, Caribbean Coast of Colombia. Anales del Instituto de Investigaciones Marinas de Punta Betin 19–20:173196.Google Scholar
Didham, R. K., Tylianakis, J. M., Hutchison, M. A., Ewers, R. M., and Gemmell, N. J.. 2005. Are invasive species the drivers of ecological change? Trends in Ecology and Evolution 20:470474.Google Scholar
Dietl, G. P., and Alexander, R. R.. 2000. Post-Miocene shift in stereotypic naticid predation on confamilial prey from the Mid-Atlantic shelf: coevolution with dangerous prey. Palaios 15:414429.Google Scholar
Dietl, G. P., and Herbert, G. S.. 2005. Influence of alternative shell-drilling behaviours on attack duration of the predatory snail, Chicoreus dilectus. Journal of Zoology 265:201206.Google Scholar
Dietl, G. P., and Kelley, P. H.. 2002. The fossil record of predator–prey arms races: coevolution and escalation hypotheses. Paleontological Society Papers 8:353374.Google Scholar
Domning, D. 2001. Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean. Palaeogeography, Palaeoclimatology, Palaeoecology 166:2750.Google Scholar
Elliott, J. K., and Leggett, W. C.. 1996. The effect of temperature on predation rates of a fish (Gasterosteus aculeatus) and a jellyfish (Aurelia aurita) on larval capelin (Mallotus villosus). Canadian Journal of Fisheries and Aquatic Sciences 53:13931402.Google Scholar
Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., Carpenter, S. R., et al. 2011. Trophic downgrading of planet Earth. Science 333:301306.Google Scholar
Fortunato, H., and Schafer, P.. 2009. Coralline algae as carbonate producers and habitat providers on the eastern Pacific coast of Panama: preliminary assessment. Neues Jahrbuch Geologie und Palontologie-Abhandlungen 253:145161.Google Scholar
Gallegos, M., Merino, M., Marba, N., and Duarte, C.. 1993. Biomass and dynamics of Thalassia testudinum in the Mexican Caribbean: elucidating rhizome growth. Marine Ecology Progress Series 95:185192.Google Scholar
Gilinsky, N., and Bennington, J.. 1994. Estimating numbers of whole individuals from collections of body parts: a taphonomic limitation of the paleontological record. Paleobiology 20:245258.Google Scholar
Haaker, P. L., Duffy, J. M., Henderson, K. C., and Parker, D. O.. 1988. The speckled scallop, Argopecten circularis, in Aqua Hedionda Lagoon, San Diego County, California. California Department of Fish and Game, Long Beach, Calif.Google Scholar
Harper, E. M. 2006. Dissecting post-Paleozoic arms races. Palaeogeography, Palaeoclimatology, Palaeoecology 232:322343.Google Scholar
Harriston, N. G., Smith, F. E., and Slobodkin, L. B.. 1960. Community structure, population control, and competition. American Naturalist 94:421425.Google Scholar
Hatcher, B. G. 1988. Coral reef primary productivity: a beggar’s banquet. Trends in Ecology and Evolution 3:106111.Google Scholar
Hatcher, B. G. 1990. Coral reef primary productivity: a hierarchy of pattern and process. Trends in Ecology and Evolution 5:149155.Google Scholar
Haug, G. H., Tiedemann, R., Zahn, R., and Ravelo, A. C.. 2001. Role of Panama uplift on Oceanic freshwater balance. Geology 29:207210.Google Scholar
Hauser, I., Oschmann, W., and Gischler, E.. 2007. Modern bivalve shell assemblages on three atolls offshore Belize (Central America, Caribbean Sea). Facies 53:451478.Google Scholar
Hayward, B. W., Stephenson, A. B., Morley, M., Riley, J. L., and Grenfell, H. R.. 1997. Faunal changes in Waitemata Harbour sediments, 1930s–1990s. Journal of the Royal Society of New Zealand 27:120.Google Scholar
Hendy, A. J. W. 2013. Spatial and stratigraphic variation of marine paleoenvironments in the Middle–Upper Miocene Gatun Formation, Isthmus of Panama. Palaios 28:210227.Google Scholar
Hoffman, A., Pisera, A., and Ryszkiewicz, M.. 1974. Predation by muricid and naticid gastropods on the Lower Tortonian mollusks from the Korytnica clays. Acta Geologica Polonica 24:249264.Google Scholar
Holling, C. S. 1959. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Canadian Entomologist 91:293320.Google Scholar
Holt, R. D., Grove, J., and Tilman, D.. 1994. Simple rules for interspecific dominance in systems with exploitative and apparent competition. American Naturalist 144:741771.Google Scholar
Huntley, J. W., and Kowalewski, M.. 2007. Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proceedings of the National Academy of Sciences USA 104:1500615010.Google Scholar
Huntley, J. W., and Scarponi, D.. 2015. Geographic variation of parasitic and predatory traces on mollusks in the northern Adriatic Sea, Italy: implications for the stratigraphic paleobiology of biotic interactions. Paleobiology 41:134153.Google Scholar
Hurlburt, S. H. 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54:187211.Google Scholar
Jablonski, D. 2003. The interplay of physical and biotic factors in macroevolution. Pp. 235252 in L. Rothschild and A. Lister, eds. Evolution on planet Earth. Elsevier, Amsterdam.Google Scholar
Jackson, J. B. C. 1972. The ecology of the molluscs of Thalassia communities, Jamaica, West Indies. II. Molluscan population variability along an environmental stress gradient. Marine Biology 14:304337.Google Scholar
Jackson, J. B. C. 1973. The ecology of molluscs of Thalassia Communities, Jamaica, West Indies. I. Distribution, environmental physiology, and ecology of common shallow-water species. Bulletin of Marine Science 23:313350.Google Scholar
Jackson, J. B. C., and Erwin, D. H.. 2006. What can we learn about ecology and evolution from the fossil record? Trends in Ecology and Evolution 21:322328.Google Scholar
Jackson, J. B. C., and O’Dea, A.. 2013. Timing of the oceanographic and biological isolation of the Caribbean Sea from the tropical Eastern Pacific. Bulletin of Marine Science 89:779800.Google Scholar
Jackson, J. B. C., Todd, J. A., Fortunato, H., and Jung, P.. 1999. Diversity and assemblages of Neogene Caribbean Mollusca of lower Central America. Bulletin of American Paleontology 357:193230.Google Scholar
Jagadeeshan, S., and O’Dea, A.. 2012. Integrating fossils and molecules to study Cupuladriid evolution in an emerging isthmus. Evolution and Ecology 26:337355.Google Scholar
Johnson, K. G., Budd, A. F., and Stemann, T. A.. 1995. Extinction selectivity and ecology of Neogene Caribbean reef corals. Paleobiology 21:5273.Google Scholar
Johnson, K. G., Todd, J. A., and Jackson, J. B. C.. 2007. Coral reef development drives molluscan diversity increase at local and regional scales in the late Neogene and Quaternary of the southwestern Caribbean. Paleobiology 33:2452.Google Scholar
Johnson, K. G., Jackson, J. B. C., and Budd, A. F.. 2008. Caribbean reef development was independent of coral diversity over 28 million years. Science 319:15211523.Google Scholar
Joll, L. M. 1989. Swimming behaviour of the saucer scallop Amusium balloti (Mollusca: Pectinidae). Marine Biology 102:299305.Google Scholar
Jones, C. C. 1984. Ventricolaria judithae n. sp. (Bivalvia, Veneridae) from the Oligocene of North Carolina, with comments on ecology. Proceedings of the Academy of Natural Sciences of Philadelphia 136:152164.Google Scholar
Jones, D. S., and Allmon, W. D.. 1995. Records of upwelling, seasonality, and growth in stable-isotope profiles of Pliocene mollusk shells from Florida. Lethaia 28:6174.Google Scholar
Kaunzinger, C. M. K., and Morin, P. J.. 1998. Productivity controls food-chain properties in microbial communities. Nature 1078:495497.Google Scholar
Keen, A. M. 1971. Sea shells of tropical west America: marine mollusks from Baja California to Peru. Stanford University Press, Stanford, Calif.Google Scholar
Keigwin, L. 1982. Isotopic paleoceanography of the Caribbean and East Pacific: role of Panama uplift in Late Neogene time. Science 217:350353.Google Scholar
Kelley, P. H., and Hansen, T. A.. 2003. The fossil record of drilling predation on bivalves and gastropods. Pp. 113139 in P. Kelley, M. Kowalewski, and T. Hansen, eds. Predator–Prey Interactions in the Fossil Record. Kluwer Academic/Plenum, New York.Google Scholar
Kelley, P. H., and Hansen, T. A.. 2007. Latitudinal patterns in Naticid gastropod predation along the east coast of the United States: a modern baseline for interpreting temporal patterns in the fossil record. Pp. 287299 in R. G. Bromley, L. A. Buatois, G. Mangano, J. F. Genise, and R. N. Melchor, eds. Sediment–organism interactions: a multi-faceted ichnology (SEPM Special Publication Vol. 88). Society for Sedimentary Geology, Tulsa, Okla.Google Scholar
Kelley, P. H, Hansen, T. A., Graham, S. E., and Huntoon, A. G.. 2001. Temporal patterns in the efficiency of naticid gastropod predators during the Cretaceous and Cenozoic of the United States Coastal Plain. Palaeogeography Palaeoclimatology Palaeoecology 166:165176.Google Scholar
Kitchell, J. A., Boggs, C. H., Kitchell, J. F., and Rice, J. A.. 1981. Prey selection by naticid gastropods: experimental tests and application to the fossil record. Paleobiology 7:533552.Google Scholar
Kirby, M. X., and Jackson, J. B. C.. 2004. Extinction of a fast-growing oyster and changing ocean circulation in Pliocene tropical America. Geology 32:10251028.Google Scholar
Kowalewski, M. 1993. Morphometric analysis of predatory drillholes. Palaeogeography Palaeoclimatology Palaeoecology 102:6988.Google Scholar
Kowalewski, M. 2002. The fossil record of predation: an overview of analytical methods. Paleontological Society Papers 8:342.Google Scholar
Kowalewski, M. 2004. Drill holes produced by the predatory gastropod Nucella lamellosa (Muricidae): paleobiological and ecological implications. Journal of Molluscan Studies 70:359370.Google Scholar
Kowalewski, M., Hoffmeister, A. P., Baumiller, T. K., and Bambach, R. K.. 2005. Secondary evolutionary escalation between brachiopods and enemies of other prey. Science 308:17741777.Google Scholar
Lavergne, S., Mouquet, N., Thuiller, W., and Ronce, O.. 2010. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annual Reviews in Ecology and Systematics 41:321350.Google Scholar
Leibold, M. A. 1989. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. American Naturalist 134:922949.Google Scholar
Leighton, L. R. 2002. Inferring predation intensity in the marine fossil record. Paleobiology 28:328342.Google Scholar
Leonard-Pingel, J. S., and Jackson, J. B. C.. 2013. Drilling intensity varies among Neogene tropical American Bivalvia in relation to shell form and life habit. Bulletin of Marine Science 89:905909.Google Scholar
Leonard-Pingel, J. S., Jackson, J. B. C., and O’Dea, A.. 2012. Changes in bivalve functional and assemblage ecology in response to environmental change in the Caribbean Neogene. Paleobiology 38:509524.Google Scholar
Levin, S. A. 1992. The problem of pattern and scale in ecology: the Robert H. MacArthur Award lecture. Ecology 71:19431967.Google Scholar
Lynch, M., and Lande, R.. 1993. Evolution and extinction in response to environmental change. Pp. 234250 in P. M. Kareiva, J. G. Kingsolver, and R. B. Huey, eds. Biotic interactions and global change. Sinauer, Sunderland, Mass.Google Scholar
Martinelli, J. C., Gordillo, S., and Archuby, F.. 2013. Muricid drilling predation at high latitudes: insights from the southernmost Atlantic. Palaios 28:3341.Google Scholar
Marx, F. G., and Uhen, M. D.. 2010. Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales. Science 327:993996.Google Scholar
Mayr, E. 1961. Cause and effect in biology. Science 134:15011506.Google Scholar
Menge, B. A., and Sutherland, J. P.. 1987. Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. American Naturalist 130:730757.Google Scholar
Mikkelsen, P. M., and Bieler, R.. 2001. Varicorbula (Bivalvia: Corbulidae) of the Western Atlantic: taxonomy, Anatomy, Life Habits, and Distribution. Veliger 44:271293.Google Scholar
Morton, B. 1980. Swimming in Amusium pleuronectes (Bivalvia, Pectinidae). Journal of Zoology 190:375404.Google Scholar
O’Dea, A., and Jackson, J. B. C.. 2009. Environmental change drove macroevolution in cupuladriid bryozoans. Procedings of the Royal Society of London Series B 276:36293634.Google Scholar
O’Dea, A., Jackson, J. B. C., Fortunato, H., Smith, J. T., D’Croz, L., Johnson, K. G., and Todd, J. A.. 2007. Environmental change preceded Caribbean extinction by 2 million years. Proceedings of the National Academy of Sciences USA 104:55015506.Google Scholar
Odum, H. T., and Odum, E. P.. 1955. Trophic struture and productivity of a windward coral reef community on Eniwetok Atoll. Ecological Monographs 25:291320.Google Scholar
Oliver, P. 1981. The functional morphology and evolution of Recent Limopsidae (Bivalvia, Arcoidea). Malacologia 21:6193.Google Scholar
Olsson, A. A. 1971. Biological results of the University of Miami deep-sea expeditions: mollusks from the Gulf of Panama collected by R/V John Elliott Pillsbury, 1967. Bulletin of Marine Science 21:3592.Google Scholar
Pace, M. L., Cole, J. J., Carpenter, S. R., and Kitchell, J. F.. 1999. Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution 14:483488.Google Scholar
Paine, R. T. 1966. Food Web Complexity and Species Diversity. American Naturalist 100:6575.Google Scholar
Pereira, H. M., Leadley, P. W., Proença, V., Alkemade, R., Scharlemann, J. P. W., Fernandez-Manjarrés, J. F., Araújo, M. B., et al. 2010. Scenarios for global biodiversity in the 21st century. Science 330:14961501.Google Scholar
Pilsbry, H. A. 1931. The Miocene and Recent Mollusca of Panama Bay. Proceedings of the Academy of Natural Sciences of Philadelphia 83:427474.Google Scholar
Pires, A. M. S. 1992. Structure and dynamics of benthic megafauna on the continental shelf offshore of Ubatuba, Southeastern Brazil. Marine Ecology Progress Series 86:6376.Google Scholar
Prezant, R. S. 1998. Superfamily Verticordioidea. Pp. 420422 in P. L. Beesley, G. J. B. Ross, and A. Wells, eds. Mollusca: the southern synthesis. CSIRO, Melbourne, Australia.Google Scholar
Probert, P. K., and Grove, S. L.. 1998. Macrobenthic assemblages of the continental shelf and upper slope off the west coast of South Island, New Zealand. Journal of the Royal Society of New Zealand 28:259280.Google Scholar
Ricker, W. E. 1941. The consumption of young sockeye salmon by predaceous fish. Journal of the Fisheries Research Board of Canada 5:293313.Google Scholar
Riggs, S. R. 1984. Paleoceanographic model of Neogene phosphorite deposition, U.S. Atlantic continental margin. Science 223:123131.Google Scholar
Roemer, G. W., Gompper, M. E., and Van Valkenburgh, B.. 2009. The ecological role of the mammalian mesocarnivore. BioScience 59:165173.Google Scholar
Roopnarine, P. D. 1996. Systematics, biogeography, and extinction of Chionine bivalves (Bivalvia: Veneridae) in tropical America: Early Oligocene–Recent. Malacologia 38:103142.Google Scholar
Rudnick, D. T., Elmgren, R., and Frithsen, J. B.. 1985. Meiofaunal prominence and benthic seasonality in a coastal marine ecosystem. Oecologia 67:157168.Google Scholar
Sawyer, J. A., and Zuschin, M.. 2010. Intensities of drilling predation of molluscan assemblages along a transect through the northern Gulf of Trieste (Adriatic Sea). Palaeogeography, Palaeoclimatology, Palaeoecology 285:152173.Google Scholar
Schindler, D.W. 1990. Experimental perturbations of whole lakes as tests of hypotheses concerning ecosystem structure and function. Oikos 57:2541.Google Scholar
Shumway, S. E., and Parsons, G. J.. 2006. Scallops: biology, ecology and aquaculture. Elsevier Science, Amsterdam.Google Scholar
Simone, L. R. L., and Wilkinson, S.. 2008. Comparative morphological study of some Tellinidae from Thailand (Bivalvia: Tellinoidea). Raffles Bulletin of Zoology 18:151190.Google Scholar
Slack-Smith, S. M. 1998. Superfamily Chamoidea. Pp. 307309 in P. L. Beesley, G. J. B. Ross, and A. Wells, eds. Mollusca: the Southern Synthesis. CSIRO, Melbourne, Australia.Google Scholar
Smith, J. T. 2006. Ecology and environments of an extreme faunal turnover in tropical American scallops. Ph.D. dissertation. University of California, San Diego, San Diego, Calif.Google Scholar
Smith, J. T., and Jackson, J. B. C.. 2009. Ecology of extreme faunal turnover of tropical American scallops. Paleobiology 35:7793.Google Scholar
Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoir 125.Google Scholar
Stasek, C. R. 1961. The ciliation and function of the labial palps of Acila castrensis (Protobranchia, Nuculidae), with an evaluation of the role of the protobranch organs of feeding in the evolution of the Bivalvia. Proceedings of the Zoological Society of London 137:511538.Google Scholar
Taylor, J. D. 1968. Coral reef and associated invertebrate communities (mainly Molluscan) around Mahe Seychelles. Philosophical Transactions of the Royal Society of London B 254:129206.Google Scholar
Taylor, J. D., and Reid, D. G.. 1969. The abundance and trophic classification of molluscs upon coral reefs in the Sudanese Red Sea. Journal of Natural History 18:175209.Google Scholar
Teranes, J. L., Geary, D. H., and Bemis, B. E.. 1996. The oxygen isotopic record of seasonality in Neogene bivalves from the Central American Isthmus. Pp. 105129 in J. B. C. Jackson, A. F. Budd, and A. G. Coates, eds. Evolution and environment in tropical America. University of Chicago Press, Chicago.Google Scholar
Terry, R. C., Cheng, L., and Hadly, E. A.. 2011. Predicting small-mammal response to climatic warming: autecology, geographic range, and the Holocene fossil record. Global Change Biology 17:30193034.Google Scholar
Thomas, R. 1975. Functional morphology, ecology, and evolutionary conservatism in the Glycymerididae (Bivalvia). Palaeontology 18:217258.Google Scholar
Thomas, R. D. K. 1978. Shell form and ecological range of living and extinct Arcoida. Paleobiology 4:181194.Google Scholar
Todd, J. 2001. Identification and taxonomic consistency. Neogene marine biota of tropical America. http://nmita.iowa.uiowa.edu/database/mollusc/molluscintro.htm.Google Scholar
Todd, J. A., and Johnson, K. G.. 2013. Dissecting a marine snail species radiation (Conoidea: Turridae: Polystira) over 12 million years in the southwestern Caribbean. Bulletin of Marine Science 89:877904.Google Scholar
Todd, J. A., Jackson, J. B. C., Johnson, K. G., Fortunato, H. M., Heitz, A., Alvarez, M., and Jung, P.. 2002. The ecology of extinction: molluscan feeding and faunal turnover in the Caribbean Neogene. Proceedings of the Royal Society of London B 269:571577.Google Scholar
Urban, H. J., and Campos, B.. 1994. Population dynamics of the bivalves Gari solida, Semele solida, and Protothaca thaca from a small bay in Chile at 36 degrees S. Marine Ecology Progress Series 115:93102.Google Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators, and grazers. Paleobiology 3:245258.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation. Princeton University Press, Princeton, N.J.Google Scholar
Vermeij, G. J., and Petuch, E.. 1986. Differential extinction in tropical American molluscs: endemism, architecture, and the Panama land bridge. Malacologia 27:2941.Google Scholar
Vermeij, G. J., Schindel, D. E., and Zipser, E.. 1981. Predation through geological time: evidence from gastropod shell repair. Science 214:10241026.Google Scholar
Vrba, E. S. 2005. Mass turnover and heterochrony events in response to physical change. Paleobiology 31:157174.Google Scholar
Walker, S. 2007. Traces of gastropod predation on molluscan prey in tropical reef environments. Pp. 324344 in W. Miller, ed. Trace fossils: concepts, problems, and prospects. Elsevier, Amsterdam.Google Scholar
Woodring, W. P. 1966. The Panama land bridge as a sea barrier. Proceedings of the American Philosophical Society 110:425433.Google Scholar
Wootton, J. T., Parker, M. S., and Power, M. E.. 1996. Effects of disturbance on river food webs. Science 273:15581561.Google Scholar
Work, R. C. 1969. Systematics, ecology, and distribution of mollusks of Los Roques, Venezuela. Bulletin of Marine Science 19:614711.Google Scholar
Yonge, C. M. 1946. On the habits and adaptations of Aloidis (Corbula) gibba. Journal of the Marine Biological Association of the United Kingdom 26:358376.Google Scholar
Yonge, C. M. 1969. Functional morphology and evolution within the Carditacea (Bivalvia). Journal of Molluscan Studies 38:493527.Google Scholar
Yonge, C. M. 1978. Dimyidae (Mollusca, Bivalvia) with special reference to Dimya corrugata Hedley and Basiliomya goreaui Bayer. Journal of Molluscan Studies 44:357375.Google Scholar
Zieman, J. C., and Wetzel, R. G.. 1980. Methods and rates of productivity in seagrasses. Pp. 87116. in R. C. Phillips, and G. P. McRoy, eds. Handbook of seagrass biology Garland. New York.Google Scholar
Zuschin, M., Hohenegger, J., and Steininger, F. F.. 2001. Molluscan assemblages on coral reefs and associated hard substrata in the northern Red Sea. Coral Reefs 20:107116.Google Scholar