Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-27T18:04:03.400Z Has data issue: false hasContentIssue false

Clonal growth, algal symbiosis, and reef formation by corals

Published online by Cambridge University Press:  08 April 2016

Anthony G. Coates
Affiliation:
Department of Geology, George Washington University, Washington, D.C. 20052
Jeremy B. C. Jackson
Affiliation:
Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republica de Panama

Abstract

The occurrence of zooxanthellae in Recent scleractinian corals is strongly correlated with their growth form, corallite size, and degree of morphological integration of corallites. The great majority of zooxanthellate corals are multiserial with small, highly integrated corallites, whereas most corals lacking zooxanthellae are solitary or uniserial colonial forms with large, poorly integrated corallites. Beginning in the Jurassic, fossil scleractinian faunas are morphologically similar to Recent faunas dominated by zooxanthellate species, strongly implying that most scleractinians contained zooxanthellae by that time. Evidence for Siluro–Devonian tabulates and Triassic scleractinians is equivocal but still suggests the presence of zooxanthellae in these corals. In contrast, morphological evidence suggests that rugosan corals lacked zooxanthellae.

Most populations of Recent zooxanthellate corals contribute to reef formation, but many do not. Similarly, fossil corals interpreted to contain zooxanthellae on morphological grounds did not always form reefs. Recent reef formation depends upon a host of environmental factors that have little to do with the possession of zooxanthellae per se. Coral morphology should be a better predictor of the presence of zooxanthellae in fossil corals than their association with reefs.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Birkeland, C. 1977. The importance of rate of biomass accumulation in early successional stages of benthic communities to the survival of coral recruits. Proc. 3rd Int. Coral Reef Symp. Miami. 1:1621.Google Scholar
Cairns, S. D. 1979. The deep-water Scleractinia of the Caribbean Sea and adjacent waters. Stud. Fauna Curacao. 57:134.Google Scholar
Cairns, S. D. and Stanley, G. 1982. Ahermatypic coral banks; living and fossil counterparts. Proc. 4th Int. Coral Reef Symp. Manila, Philippines. 1:611618.Google Scholar
Coates, A. G. 1977. Jamaican Cretaceous coral assemblages and their relationships to rudist frameworks. Pp. 336341. In: Second International Symposium on corals and fossil coral reefs. Bur. Réch. Géol. Min. 86.Google Scholar
Coates, A. G. and Jackson, J. B. C. 1985. Morphological themes in the evolution of clonal and aclonal marine invertebrates. Pp. 67106. In: Jackson, J. B. C., Buss, L. W., and Cook, R. E., eds. Population Biology and Evolution of Clonal Organisms. Yale Univ. Press; New Haven.Google Scholar
Coates, A. G. and Oliver, W. A. Jr. 1986. Repetitive morphological patterns in clonal reef building invertebrates. Abstrs. North American Paleont. Conv. IV, Boulder, Colo.:A9.Google Scholar
Copper, P. 1985. Fossilized polyps in 430-million-year-old Favosites corals. Nature. 316:142144.Google Scholar
Cowen, R. 1970. Analogies between the Recent bivalve Tridacna and the fossil brachiopods Lyttoniacea and Richthofeniacea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 8:329344.Google Scholar
Cowen, R. 1983. Algal Symbiosis and its Recognition in the Fossil Record. Pp. 431479. In: Tevesz, M. J. S. and McCall, P. W., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press; New York.CrossRefGoogle Scholar
Frost, S. H. and Langenheim, R. L. 1974. Cenozoic reef biofacies. 388 pp. Northern Illinois Univ. Press; DeKalb, III.Google Scholar
Gill, G. and Coates, A. G. 1977. Auto-mobility, microstructure and substrates in some fossil and Recent corals. Lethaia. 10:119134.Google Scholar
Glynn, P. 1976. Some physical and biological determinants of coral community structure in the eastern Pacific. Ecol. Monog. 46:431456.Google Scholar
Glynn, P. 1984. Widespread coral mortality and the 1982–83 El Niño warming event. Environ. Conserv. 11(2); 133146.Google Scholar
Glynn, P. 1985a. El Niño-associated disturbance to coral reefs and post disturbance mortality by Acanthaster planci. Mar. Ecol. Prog. Ser. 26:295300.Google Scholar
Glynn, P. 1985b. Corallivore population sizes and feeding effects following El Niño (1982–1983) and associated coral mortality in Panama. Proc. 5th Int. Cor. Reef. Cong. Tahiti. 4:183188.Google Scholar
Glynn, P. W. and Wellington, G. M. 1983. Corals and Coral Reefs of the Galapagos Islands. 330 pp. Univ. Calif. Press; Berkeley.Google Scholar
Goreau, T. 1963. Calcium carbonate deposition by coralline algae and corals in relation to their roles as reef builders. Ann. N.Y. Acad. Sci. 109:127167.Google Scholar
Grant, R. E. 1971. Brachiopods in the Permian reef environment of West Texas. Proc. North. Amer. Pal. Cong. Part J:14441481.Google Scholar
Hallock, P. and Schlanger, W. 1986. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios. 1:389398.CrossRefGoogle Scholar
Hughes, T. P. 1987. Skeletal density and growth form of corals. Mar. Ecol. Prog. Ser. 35:259266.CrossRefGoogle Scholar
Jackson, J. B. C. 1977. Habit area, colonization and development of epibenthic community structure. Pp. 349358. In: Keegan, B. F., Ceidigh, P. O., and Boaden, P. J. S., eds. Biology of Benthic Organisms. Pergamon; Oxford.Google Scholar
Jackson, J. B. C. 1983. Biological determinants of present and past sessile animal distributions. Pp. 39120. In: Tevesz, M. and McCall, P. W., eds. Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press; New York.Google Scholar
Jackson, J. B. C. 1985. Distribution and ecology of clonal and aclonal benthic invertebrates. Pp. 297355. In: Jackson, J. B. C., Buss, L. W., and Cook, R. E., eds. Population Biology and Evolution of Clonal Organisms. Yale University Press; New Haven.Google Scholar
Jackson, J. B. C. and Hughes, T. P. 1985. Adaptive strategies of coral-reef invertebrates. Amer. Sci. 75:265274.Google Scholar
Kauffman, E. G. 1979. The paleobiology, ecology and evolution of rudistid bivalves. Rudist Facies Workshop. 69 pp. Gulf. Res. Dev. Co.; Houston.Google Scholar
Kauffman, E. G. and Sohi, N. F. 1974. Structure and evolution of antillean Cretaceous rudist frameworks. Verh. Naturf. Ges. Basel. 84:399467.Google Scholar
Kollmann, H. and Summesberger, H. 1982. Excursions to the Coniacian–Maastrichtian in the Austrian Alps. W.G.C.M. 4th Meeting. 1982. Gosau Basins in Austria.Google Scholar
Kuhlmann, D. H. 1983. Composition and ecology of deep-water coral associations. Helgol. Meer. 36:183204.Google Scholar
Laborel, J. 1969. Madreporaires et Hydrocoralliaires recifaux des cotes bresiliennes. Pp. 15229. Result. Sci. Campagnes “Calypso” IX.Google Scholar
Laborel, J. 1970. Les peuplements de Madreporaires des cotes tropicales du Bresil. 260 pp. Ann. Univ. Abidjan. Ecologie, Ser.E, II (3). 1969.Google Scholar
Laborel, J. 1974. West African reef corals; an hypothesis on their origin. Pp. 425443. Proc. 2nd Int. Coral Reef Symp. 1. Great Barrier Reef Comm. Brisbane.Google Scholar
Laub, R. S. 1979. The corals of the Brassfield Formation (Mid-Llandovery; Lower Silurian) in the Cincinnatti Arch region. 457 pp. Bulls. Amer. Paleo. 76(305).Google Scholar
Muscatine, L. 1973. Nutrition of corals. Pp. 77115. In: Jones, O. A. and Endean, R., eds. Biology and Geology of Coral Reefs, II Biology I. Academic Press; New York.Google Scholar
Muscatine, L., McLoskey, L. R., and Loya, Y. 1985. Contribution of zooxanthellae to coral animal growth. P. 225. Abst. Proc. 5th Int. Coral Reef Cong. Tahiti. 2.Google Scholar
Newell, N. D. 1971. An outline history of tropical organic reefs. Amer. Mus. Novitates. 2465:137.Google Scholar
Oliver, W. A. Jr. 1954. Stratigraphy of the Onondaga Limestone (Devonian) in central New York. Geol. Soc. Amer. Bull. 65:621652.CrossRefGoogle Scholar
Oliver, W. A. Jr. 1976. Noncystimorph colonial rugose corals of the Onesquethaw and Lower Cazenovia stages (Lower and Middle Devonian in New York and adjacent areas. 156 pp. U. S. Geol. Surv. Prof. Pap. 869.Google Scholar
Philip, J. 1972. Paleoecologie des formations à rudistes du Crétacé Superieur-l'example du sud-est de la France. Palaeogeogr. Palaeoclimatol. Palaeoecol. 12:205.Google Scholar
Philip, J. 1980. Crétacé Supèrieur de Provence. Geobios Mem. 3 Spec. 4:99109.Google Scholar
Salvat, B. 1967. Importance de la faune malacologique dans les atolls polynesiens. Cah. Pacif. 11:749.Google Scholar
Salvat, B. 1969. Dominance biologique de quelques mollusques dans les atolls fermes (Tuamotu, Polynesie). Malacologia. 9:187189.Google Scholar
Sando, W. 1969. Corals. Pp. 257344. In: McKee, E. D. and Gutschick, R. C., eds. History of the Redwall Limestone of Northern Arizona. Geol. Soc. Amer. Mem. 114.Google Scholar
Sando, W. 1980. The Paleoecology of Mississippian corals in the conterminous United States. Acta. Paleont. Pol. 25:619631.Google Scholar
Schuhmacher, H. and Zibrowius, H. 1985. What is hermatypic? A redefinition of ecological groups in corals and other organisms. Coral Reefs. 4:19.Google Scholar
Scott, R. 1981. Biotic relations in Early Cretaceous coral-algalrudist reefs, Arizona. J. Paleontol. 55:463478.Google Scholar
Scott, R. 1985. Evolution of Early Cretaceous reefs in the Gulf of Mexico. Palaeont. Amer. 54:406412.Google Scholar
Scott, R. 1986. Evolution of Late Jurassic and Early Cretaceous reefs. P. A42. Absts. North Amer. Paleo. Cong. IV, Boulder, Colo.Google Scholar
Squires, D. 1964. Fossil coral thickets in Wairarapa, New Zealand. Jour. Paleo. 38:904915.Google Scholar
Stanley, G. D. 1979. Triassic carbonate build-ups of western North America: comparisons with the Alpine Triassic of Europe. Riv. Ital. Paleont. 85:877894.Google Scholar
Stanley, G. D. 1981. Early history of scleractinian corals and its geological consequences. Geology. 9:507.Google Scholar
Stanley, G. D. 1986. Deep and cold water reef communities; implications for the fossil record. P. A44. Absts. North Amer. Paleo. Cong. IV., Boulder, Colo.Google Scholar
Stanley, G. D. and Swart, P. K. 1984. A geochemical method for distinguishing zooxanthellate corals in the fossil record. Pp. 117118. Absts. Advances in Reef Science, Rosensteil Sch. Mar. Atmos. Sci. Univ. Miami, Miami.Google Scholar
Stumm, E. C. 1965. Silurian and Devonian corals of the falls of the Ohio. Geol. Soc. Amer. Mem. 93:184.Google Scholar
Taylor, D. L. 1973. The cellular interactions of algal-invertebrate symbiosis. Adv. Mar. Biol. 11:156.Google Scholar
Teichert, C. 1958. Cold and deep-water banks. Bull Amer. Assoc. Pet. Geol. 42:10641082.Google Scholar
Tracey, J. 1969. Holocene emergent reefs and dolomitization in the southern Line Islands. P. A96. U.S. Prof. Pap. 650-A.Google Scholar
Tracey, J. 1972. Holocene emergent reefs in the central Pacific. P. 51. Amer. Quat. Assoc., Abst. 2nd. Nat. Conf., Dec. 1972. Miami, Fla.Google Scholar
Veron, J. E. and Pichon, M. 1976. Scleractinia of Eastern Australia, Part 1. Families: Thamnasteriidae, Astrocoenidae, Pocilliporidae. 86 pp. Aust. Inst. Mar. Sci. Mon. Ser. 1.Google Scholar
Veron, J. E. and Pichon, M. 1979. Scleractinia of Eastern Australia, Part III. Families: Agariciidae, Siderastereidae, Fungidae, Oculinidae, Merulinidae, Mussidae, Pectinidae, Caryophyllidae, Dendrophylliidae. 442 pp. Aust. Inst. Mar. Sci. Mon. Ser. 4.Google Scholar
Veron, J. E. and Pichon, M. 1982. Scleractinia of Eastern Australia, Part IV. Family: Portidae. 159 pp. Aust. Inst. Mar. Sci. Mon. Ser. 5.Google Scholar
Veron, J. E., Pichon, M., and Wijsman-Best, M. 1977. Scleractinia of Eastern Australia, Part II. Families: Faviidae, Trachyphylliidae. 233 pp. Aust. Inst. Mar. Sci. Mon. Ser. 3.Google Scholar
Veron, J. E. and Wallace, C. C. 1984. Scleractinia of Eastern Australia, Part 5. Family: Acroporidae. 485 pp. Aust. Inst. Mar. Sci. Mon. Ser. 6.Google Scholar
Wells, J. W. 1933. Corals of the Cretaceous of the Atlantic and Gulf coastal plains and western interior of the United States. Bull. Am. Paleontol. 18:85288.Google Scholar
Wells, J. W. 1983. Annotated list of the scleractinian corals of the Galapagos Islands. Pp. 213330. In: Glynn, P. W. and Wellington, G. M., eds. Corals and Coral Reefs of the Galapagos Islands. Univ. Calif. Press; Berkeley.Google Scholar
Wulff, J. L. 1985. Clonal organisms and the evolution of mutualism. Pp. 437466. In: Jackson, J. B. C., Buss, L. W., and Cook, R. E., eds. Population Biology and Evolution of Clonal Organisms. Yale University Press; New Haven.Google Scholar
Zibrowius, H. 1980. Les Scleractiniaires de la Mediterranée et de l'Atlantique nord-orientale. Mém. Inst. Oceanogr. Monaco. 11:1248.Google Scholar