Skip to main content Accessibility help
×
Home

Scoping review of Paleolithic dietary patterns: a definition proposal

  • Víctor de la O (a1) (a2) (a3), Itziar Zazpe (a1) (a2) (a3) (a4), J. Alfredo Martínez (a2) (a3) (a4) (a5), Susana Santiago (a3) (a4), Silvia Carlos (a1) (a3), M. Ángeles Zulet (a2) (a3) (a4) and Miguel Ruiz-Canela (a1) (a2) (a3)...

Abstract

The Paleolithic diet (PaleoDiet) is an allegedly healthy dietary pattern inspired by the consumption of wild foods and animals assumed to be consumed in the Paleolithic era. Despite gaining popularity in the media, different operational definitions of this Paleolithic nutritional intake have been used in research. Our hypothesis is that specific components used to define the PaleoDiet may modulate the association of this diet with several health outcomes. We comprehensively reviewed currently applied PaleoDiet scores and suggested a new score based on the food composition of current PaleoDiet definitions and the theoretical food content of a staple dietary pattern in the Paleolithic age. In a PubMed search up to December 2019, fourteen different PaleoDiet definitions were found. We observed some common components of the PaleoDiet among these definitions although we also found high heterogeneity in the list of specific foods that should be encouraged or banned within the PaleoDiet. Most studies suggest that the PaleoDiet may have beneficial effects in the prevention of cardiometabolic diseases (type 2 diabetes, overweight/obesity, CVD and hyperlipidaemias) but the level of evidence is still weak because of the limited number of studies with a large sample size, hard outcomes instead of surrogate outcomes and long-term follow-up. Finally, we propose a new PaleoDiet score composed of eleven food items, based on a high consumption of fruits, nuts, vegetables, fish, eggs and unprocessed meats (lean meats); and a minimum content of dairy products, grains and cereals, and legumes and practical absence of processed (or ultra-processed) foods or culinary ingredients.

Copyright

Corresponding author

*Corresponding author: Miguel Ruiz-Canela, email mcanela@unav.es

References

Hide All
1.Whalen, KA, Judd, S, McCullough, ML, et al. (2017) Paleolithic and Mediterranean diet pattern scores are inversely associated with all-cause and cause-specific mortality in adults. J Nutr 147, 612620.
2.Henry, AG, Brooks, AS & Piperno, DR (2014) Plant foods and the dietary ecology of Neanderthals and early modern humans. J Hum Evol 69, 4454.
3.Stiner, MC (2005) Middle Paleolithic subsistence ecology in the Mediterranean region. In Transitions Before the Transition: Evolution and Stability in the Middle Paleolithic and Middle Stone Age, pp. 213231 [Hovers, E and Kuhn, SL, editors]. Boston, MA: Springer.
4.Jönsson, T, Granfeldt, Y, Lindeberg, S, et al. (2013) Subjective satiety and other experiences of a Paleolithic diet compared to a diabetes diet in patients with type 2 diabetes. Nutr J 12, 105.
5.Stiner, MC, Munro, ND & Surovell, TA (2000) The tortoise and the hare. Small-game use, the broad-spectrum revolution, and Paleolithic demography. Curr Anthropol 41, 3979.
6.Richards, MP & Trinkaus, E (2009) Isotopic evidence for the diets of European Neanderthals and early modern humans. Proc Natl Acad Sci U S A 106, 1603416039.
7.Bocherens, H (2009) Neanderthal dietary habits: review of the isotopic evidence. In The Evolution of Hominin Diets: Integrating Approaches to the Study of Palaeolithic Subsistence, pp. 241250Hublin, [J-J and Richards, MP, editors]. Boston, MA: Springer.
8.Eaton, SB & Cordain, L (1997) Evolutionary aspects of diet: old genes, new fuel. World Rev Nutr Diet 81, 2637.
9.Boers, I, Muskiet, FA, Berkelaar, E, et al. (2014) Favourable effects of consuming a Palaeolithic-type diet on characteristics of the metabolic syndrome: a randomized controlled pilot-study. Lipids Health Dis 13, 160.
10.Frassetto, LA, Schloetter, M, Mietus-Synder, M, et al. (2009) Metabolic and physiologic improvements from consuming a Paleolithic, hunter–gatherer type diet. Eur J Clin Nutr 69, 13761376.
11.Whalen, KA, McCullough, M, Flanders, WD, et al. (2014) Paleolithic and Mediterranean diet pattern scores and risk of incident, sporadic colorectal adenomas. Am J Epidemiol 180, 10881097.
12.Ghaedi, E, Mohammadi, M, Mohammadi, H, et al. (2019) Effects of a Paleolithic diet on cardiovascular disease risk factors: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr 10, 634646.
13.Jamka, M, Kulczyński, B, Juruć, A, et al. (2020) The effect of the Paleolithic diet vs. healthy diets on glucose and insulin homeostasis: a systematic review and meta-analysis of randomized controlled trials. J Clin Med 9, 296.
14.De Menezes, EVA, de Carvalho Sampaio, HA, Carioca, AAF, et al. (2019) Influence of Paleolithic diet on anthropometric markers in chronic diseases: systematic review and meta-analysis. Nutr J 18, 41.
15.Fenton, TR & Fenton, CJ (2016) Paleo diet still lacks evidence. Am J Clin Nutr 104, 844.
16.Manheimer, EW, van Zuuren, EJ, Fedorowicz, Z, et al. (2015) Paleolithic nutrition for metabolic syndrome : systematic review and meta-analysis. Am J Clin Nutr 102, 922932.
17.Truswell, AS (1998) Practical and realistic approaches to healthier diet modifications. Am J Clin Nutr 67, 583S590S.
18.Challa, HJ, Bandlamudi, M & Uppaluri, KR (2020) Paleolithic Diet. Treasure Island, FL: StatPearls Publishing LLP.
19.Pickworth, CK, Deichert, DA, Corroon, J, et al. (2019) Randomized controlled trials investigating the relationship between dietary pattern and high-sensitivity C-reactive protein: a systematic review. Nutr Rev 77, 363375.
20.Sanches Machado D’Almeida, K, Ronchi Spillere, S, Zuchinali, P, et al. (2018) Mediterranean diet and other dietary patterns in primary prevention of heart failure and changes in cardiac function markers: a systematic review. Nutrients 10, 58.
21.Anton, SD, Hida, A, Heekin, K, et al. (2017) Effects of popular diets without specific calorie targets on weight loss outcomes: systematic review of findings from clinical trials. Nutrients 9, 822.
22.De Lira-García, C, Bacardí-Gascón, M & Jiménez-Cruz, A (2012) Efecto del consumo de nueces, semillas y aceites sobre marcadores bioquímicos y el peso corporal; revisión sistemática (Effectiveness of long-term consumption of nuts, seeds and seed oil on glucose and lipid levels; systematic review). Nutr Hosp 27, 964970.
23.Godos, J, Bella, F, Torrisi, A, et al. (2016) Dietary patterns and risk of colorectal adenoma: a systematic review and meta-analysis of observational studies. J Hum Nutr Diet 29, 757767.
24.Churuangsuk, C, Griffiths, D, Lean, MEJ, et al. (2019) Impacts of carbohydrate-restricted diets on micronutrient intakes and status: a systematic review. Obes Rev 20, 11321147.
25.Carter, P, Achana, F, Troughton, J, et al. (2014) A Mediterranean diet improves HbA1c but not fasting blood glucose compared to alternative dietary strategies: a network meta-analysis. J Hum Nutr Diet 27, 280297.
26.Boraxbekk, C-J, Stomby, A, Ryberg, M, et al. (2015) Diet-induced weight loss alters functional brain responses during an episodic memory task. Obes Facts 8, 261272.
27.Stomby, A, Simonyte, K, Mellberg, C, et al. (2015) Diet-induced weight loss has chronic tissue-specific effects on glucocorticoid metabolism in overweight postmenopausal women. Int J Obes 39, 814819.
28.Andersson, J, Mellberg, C, Otten, J, et al. (2016) Left ventricular remodelling changes without concomitant loss of myocardial fat after long-term dietary intervention. Int J Cardiol 216, 9296.
29.Otten, J, Mellberg, C, Ryberg, M, et al. (2016) Strong and persistent effect on liver fat with a Paleolithic diet during a two-year intervention. Int J Obes 40, 747753.
30.Blomquist, C, Chorell, E, Ryberg, M, et al. (2017) Decreased lipogenesis-promoting factors in adipose tissue in postmenopausal women with overweight on a Paleolithic-type diet. Eur J Nutr 57, 28772886.
31.Manousou, S, Stål, M, Larsson, C, et al. (2017) A Paleolithic-type diet results in iodine deficiency: a 2-year randomized trial in postmenopausal obese women. Eur J Clin Nutr 72, 124129.
32.Otten, J, Ryberg, M, Mellberg, C, et al. (2019) Postprandial levels of GLP-1, GIP and glucagon after 2 years of weight loss with a Paleolithic diet: a randomised controlled trial in healthy obese women. Eur J Endocrinol 180, 417427.
33.Stomby, A, Otten, J, Ryberg, M, et al. (2017) A Paleolithic diet with and without combined aerobic and resistance exercise increases functional brain responses and hippocampal volume in subjects with type 2 diabetes. Front Aging Neurosci 9, 391.
34.Otten, J, Stomby, A, Waling, M, et al. (2017) Effects of a Paleolithic diet with and without supervised exercise on fat mass, insulin sensitivity, and glycemic control: a randomized controlled trial in individuals with type 2 diabetes. Diabetes Metab Res Rev 33, 10.1002/dmrr.2828.
35.Otten, J, Stomby, A, Waling, M, et al. (2018) A heterogeneous response of liver and skeletal muscle fat to the combination of a Paleolithic diet and exercise in obese individuals with type 2 diabetes: a randomised controlled trial. Diabetologia 61, 15481559.
36.Fontes-Villalba, M, Lindeberg, S, Granfeldt, Y, et al. (2016) Palaeolithic diet decreases fasting plasma leptin concentrations more than a diabetes diet in patients with type 2 diabetes: a randomised cross-over trial. Cardiovasc Diabetol 15, 80.
37.Jönsson, T, Granfeldt, Y, Ahrén, B, et al. (2009) Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot study. Cardiovasc Diabetol 8, 35.
38.Frassetto, LA, Shi, L, Schloetter, M, et al. (2013) Established dietary estimates of net acid production do not predict measured net acid excretion in patients with type 2 diabetes on Paleolithic–hunter–gatherer-type diets. Eur J Clin Nutr 67, 899903.
39.Masharani, U, Sherchan, P, Schloetter, M, et al. (2015) Metabolic and physiologic effects from consuming a hunter–gatherer (Paleolithic)-type diet in type 2 diabetes. Eur J Clin Nutr 69, 944948.
40.Whalen, KA, McCullough, ML, Flanders, WD, et al. (2016) Paleolithic and Mediterranean diet pattern scores are inversely associated with biomarkers of inflammation and oxidative balance in adults. J Nutr 146, 12171226.
41.Bisht, B, Darling, WG, Grossmann, RE, et al. (2014) A multimodal intervention for patients with secondary progressive multiple sclerosis: feasibility and effect on fatigue. J Altern Complement Med 20, 347355.
42.Österdahl, M, Kocturk, T, Koochek, A, et al. (2008) Effects of a short-term intervention with a Paleolithic diet in healthy volunteers. Eur J Clin Nutr 62, 682685.
43.Genoni, A, Lyons-Wall, P, Lo, J, et al. (2016) Cardiovascular, metabolic effects and dietary composition of ad-libitum Paleolithic vs. Australian Guide to Healthy Eating diets: a 4-week randomised trial. Nutrients 8, 314.
44.Jospe, MR, Roy, M, Brown, RC, et al. (2020) Intermittent fasting, Paleolithic, or Mediterranean diets in the real world: exploratory secondary analyses of a weight-loss trial that included choice of diet and exercise. Am J Clin Nutr 111, 503514.
45.Lindeberg, S, Jönsson, T, Granfeldt, Y, et al. (2007) A Palaeolithic diet improves glucose tolerance more than a Mediterranean-like diet in individuals with ischaemic heart disease. Diabetologia 50, 17951807.
46.Bligh, HFJ, Godsland, IF, Frost, G, et al. (2015) Plant-rich mixed meals based on Palaeolithic diet principles have a dramatic impact on incretin, peptide YY and satiety response, but show little effect on glucose and insulin homeostasis: an acute-effects randomised study. Br J Nutr 113, 574584.
47.Pastore, RL, Brooks, JT & Carbone, JW (2015) Paleolithic nutrition improves plasma lipid concentrations of hypercholesterolemic adults to a greater extent than traditional heart-healthy dietary recommendations. Nutr Res 35, 474479.
48.Chang, ML & Nowell, A (2016) How to make stone soup: Is the “Paleo diet” a missed opportunity for anthropologists? Evol Anthropol 25, 228231.
49.Eaton, SB, Cordain, L & Lindeberg, S (2002) Evolutionary health promotion: a consideration of common counterarguments. Prev Med 34, 119123.
50.Eaton, SB & Konner, M (1985) Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med 312, 283289.
51.Konner, M & Eaton, SB (2010) Paleolithic nutrition: twenty-five years later. Nutr Clin Pract 25, 594602.
52.Cordain, L, Miller, JB, Eaton, SB, et al. (2000) Plant–animal subsistence ratios and macronutrient energy estimations in worldwide hunter–gatherer diets. Am J Clin Nutr 71, 682692.
53.Kuipers, RS, Luxwolda, MF, Janneke Dijck-Brouwer, DA, et al. (2010) Estimated macronutrient and fatty acid intakes from an East African Paleolithic diet. Br J Nutr 104, 16661687.
54.Cordain, L (2014) The Paleo diet. Beans and legumes: are they Paleo? https://thepaleodiet.com/beans-and-legumes-are-they-paleo/ (accessed June 2020).
55.Inoue-Choi, M, Sinha, R, Gierach, GL, et al. (2016) Red and processed meat, nitrite, and heme iron intakes and postmenopausal breast cancer risk in the NIH-AARP Diet and Health Study. Int J Cancer 138, 16091618.
56.Bernstein, AM, Song, M, Zhang, X, et al. (2015) Processed and unprocessed red meat and risk of colorectal cancer: analysis by tumor location and modification by time. PLOS ONE 10, e0135959.
57.Domingo, JL & Nadal, M (2017) Carcinogenicity of consumption of red meat and processed meat: a review of scientific news since the IARC decision. Food Chem Toxicol 105, 256261.
58.Johnson, IT (2017) The cancer risk related to meat and meat products. Br Med Bull 121, 7381.
59.de Vries, E, Quintero, DC, Henríquez-Mendoza, G, et al. (2017) Population attributable fractions for colorectal cancer and red and processed meats in Colombia – a macro–simulation study. Colomb medica (Cali) 48, 6469.
60.PEN: The Global Resource for Nutrition Practice (2017) Evidence clip – the popular paleo diet. https://www.pennutrition.com/ResourcesTools.aspx?type=evidenceclip&trid=22942&trcatid=496 (accessed June 2020).
61.Genoni, A, Lo, J, Lyons-Wall, P, et al. (2016) Compliance, palatability and feasibility of Paleolithic and Australian Guide to Healthy Eating diets in healthy women: a 4-week dietary intervention. Nutrients 8, 481.
62.Machovina, B, Feeley, KJ & Ripple, WJ (2015) Biodiversity conservation: the key is reducing meat consumption. Sci Total Environ 536, 419431.
63.Afshin, A, Micha, R, Khatibzadeh, S, et al. (2014) Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr 100, 278288.
64.Ha, V, Sievenpiper, JL, de Souza, RJ, et al. (2014) Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: a systematic review and meta-analysis of randomized controlled trials. CMAJ 186, E252E262.
65.Jayalath, VH, de Souza, RJ, Sievenpiper, JL, et al. (2014) Effect of dietary pulses on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Am J Hypertens 27, 5664.
66.Onakpoya, I, Aldaas, S, Terry, R, et al. (2011) The efficacy of Phaseolus vulgaris as a weight-loss supplement: a systematic review and meta-analysis of randomised clinical trials. Br J Nutr 106, 196202.
67.Crujeiras, AB, Parra, D, Abete, I, et al. (2007) A hypocaloric diet enriched in legumes specifically mitigates lipid peroxidation in obese subjects. Free Radic Res 41, 498506.
68.Hermsdorff, HHM, Zulet, , Abete, I, et al. (2011) A legume-based hypocaloric diet reduces proinflammatory status and improves metabolic features in overweight/obese subjects. Eur J Nutr 50, 6169.
69.Food and Agriculture Organization (2016) About the International Year of Pulses. http://www.fao.org/pulses-2016/about/en/ (accessed June 2020).
70.Lieberman, HR, Fulgoni, VL, Agarwal, S, et al. (2020) Protein intake is more stable than carbohydrate or fat intake across various US demographic groups and international populations. Am J Clin Nutr (epublication ahead of print version 16 April 2020).
71.Simpson, SJ & Raubenheimer, D (2020) The power of protein. Am J Clin Nutr (epublication ahead of print version 27 April 2020).
72.Eaton, SB & Nelson, DA (1991) Calcium in evolutionary perspective. Am J Clin Nutr 54, 281S287S.
73.Eaton, SB & Eaton, SB 3rd (2000) Paleolithic vs. modern diets – selected pathophysiological implications. Eur J Nutr 39, 6770.
74.Niwattisaiwong, S, Burman, KD & Li-Ng, M (2017) Iodine deficiency: clinical implications. Cleve Clin J Med 84, 236244.
75.Metzgar, M, Rideout, TC, Fontes-Villalba, M, et al. (2011) The feasibility of a Paleolithic diet for low-income consumers. Nutr Res 31, 444451.
76.Hochberg, Z & Hochberg, I (2019) Evolutionary perspective in rickets and vitamin D. Front Endocrinol (Lausanne) 10, 306.
77.Mann, N (2000) Dietary lean red meat and human evolution. Eur J Nutr 39, 7179.
78.Fung, TT, Chiuve, SE, McCullough, ML, et al. (2008) Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch Intern Med 168, 713720.
79.Schröder, H, Fitó, M, Estruch, R, et al. (2011) A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J Nutr 141, 11401145.
80.Stratton, SJ (2016) Comprehensive reviews. Prehosp Disaster Med 31, 347348.
81.Hardy, K, Buckley, S & Copeland, L (2018) Pleistocene dental calculus: recovering information on Paleolithic food items, medicines, paleoenvironment and microbes. Evol Anthropol 27, 234246.
82.Wadley, L, Backwell, L, D’Errico, F, et al. (2020) Cooked starchy rhizomes in Africa 170 thousand years ago. Science 367, 8791.
83.Naghizadeh, A, Zargaran, A & Karimi, M (2020) The heart-healthy Avicennian diet for prevention of heart disease. Eur Heart J 41, 14651466.
84.Kanauchi, M & Kanauchi, K (2019) Proposal for an empirical Japanese diet score and the Japanese diet pyramid. Nutrients 11, 2741.
85.Martínez-González, MA, Gea, A & Ruiz-Canela, M (2019) The Mediterranean diet and cardiovascular health. Circ Res 124, 779798.
86.Srour, B, Fezeu, LK, Kesse-Guyot, E, et al. (2019) Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). BMJ 365, l1451.
87.Rico-Campà, A, Martínez-González, MA, Alvarez-Alvarez, I, et al. (2019) Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ 1365, l1949.
88.Willett, WC (2013) Nutritional Epidemiology: Issues in Analysis and Presentation of Dietary Data, 3rd ed. New York: Oxford University Press.
89.Ocké, MC (2013) Evaluation of methodologies for assessing the overall diet: dietary quality scores and dietary pattern analysis. Proc Nutr Soc 72, 191199.
90.Fransen, HP & Ocké, MC (2008) Indices of diet quality. Curr Opin Clin Nutr Metab Care 11, 559565.

Keywords

Scoping review of Paleolithic dietary patterns: a definition proposal

  • Víctor de la O (a1) (a2) (a3), Itziar Zazpe (a1) (a2) (a3) (a4), J. Alfredo Martínez (a2) (a3) (a4) (a5), Susana Santiago (a3) (a4), Silvia Carlos (a1) (a3), M. Ángeles Zulet (a2) (a3) (a4) and Miguel Ruiz-Canela (a1) (a2) (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.