Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-07T23:28:48.120Z Has data issue: false hasContentIssue false

Nutritional Regulation of Pancreatic and Biliary Secretions

Published online by Cambridge University Press:  14 December 2007

Tristan Corring
Affiliation:
Station de Physiologie de la Nutrition, INRA, 78350 Jouy-en-Josas, France
Catherine Juste
Affiliation:
Station de Physiologie de la Nutrition, INRA, 78350 Jouy-en-Josas, France
Evelyne F. Lhoste
Affiliation:
Station de Physiologie de la Nutrition, INRA, 78350 Jouy-en-Josas, France
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1989

References

REFERENCES

Arffmann, S., Hojgaard, L., Giese, B. & Krag, E. (1983). Effect of oat bran on lithogenic index of bile and bile acid metabolism. Digestion 28, 197200.CrossRefGoogle ScholarPubMed
Barnwell, S. G., Godfrey, P. P., Lowe, P. J. & Coleman, R. (1983). Biliary protein output by isolated perfused rat livers. Biochemical Journal 210, 549557.CrossRefGoogle ScholarPubMed
Barnwell, S. G., Lowe, P. J. & Coleman, R. (1984). The effects of colchicine on secretion into bile of bile salts, phospholipids, cholesterol and plasma membrane enzymes: bile salts are secreted unaccompanied by phospholipids and cholesterol. Biochemical Journal 220, 723731.CrossRefGoogle Scholar
Berger, J. & Schneeman, B. O. (1986). Stimulation of bile-pancreatic zinc, protein and carboxypeptidase secretion in response to various proteins in the rat. Journal of Nutrition 116, 265272.CrossRefGoogle ScholarPubMed
Berry-Lortsch, E. & Sable-Amplis, R. (1981). Qualitative and quantitative changes in biliary secretion induced by apple consumption in hamsters. Nutrition Reports International 23, 505516.Google Scholar
Boquillon, M. & Clément, J. (1979). Effect of type and amount of dietary fat on bile flow and composition in rats. Annales de Biologie Animale, Biochimie, Biophysique 19, 17251736.CrossRefGoogle Scholar
Bozkurt, T. & Haberich, F. J. (1985). Physiological studies of exocrine pancreatic secretion in conscious rats. 7th communication: short-term kinetics of adaptation of digestive enzymes to different nutritional stimuli. Zeitschrift für Gastroenterologie 23, 257266.Google ScholarPubMed
Brown, M. S. & Goldstein, J. L. (1983). Lipoprotein receptors in the liver. Control signals for plasma cholesterol traffic. Journal of Clinical Investigation 72, 743747.CrossRefGoogle ScholarPubMed
Brydon, W. G., Tadesse, K. & Eastwood, M. A. (1980). The effect of dietary fibre on bile acid metabolism in rats. British Journal of Nutrition 43, 101106.CrossRefGoogle ScholarPubMed
Bucko, A. & Kopec, Z. (1979). L'adaptation du pancréas à la nature des aliments, son mécanisme. (The adaptation of pancreas to the nature of food, its mechanism.) Cahiers de Nutrition et Diététique 14, 7176.Google Scholar
Burns, G. P. & Stein, T. A. (1987). Pancreatic enzyme secretion during intravenous fat infusion. Journal of Parenteral & Enteral Nutrition 11, 6062.CrossRefGoogle ScholarPubMed
Christon, R., Fernandez, Y., Cambon-Gros, C., Periquet, A., Deltour, P., Leger, C. & Mitjavila, S. (1988). The effect of dietary essential fatty acid deficiency on the composition and properties of the liver microsomal membrane. Journal of Nutrition 118, 13111318.CrossRefGoogle ScholarPubMed
Corring, T. (1977). Possible role of hydrolysis products of the dietary componenets in the mechanisms of the exocrine pancreatic adaptation to the diet. World Review of Nutrition and Dietetics 27, 132144.CrossRefGoogle Scholar
Corring, T. (1980). The adaptation of digestive enzymes to the diet: its physiological significance. Reproduction, Nutrition, Développement 20, 12171235.CrossRefGoogle Scholar
Corring, T. & Chayvialle, J. A. (1987). Diet composition and the plasma levels of some peptides regulating pancreatic secretion in the pig. Reproduction, Nutrition, Développement 27, 967977.CrossRefGoogle ScholarPubMed
Corring, T. & Saucier, R. (1972). Sécrétion pancréatique sur porcs fistulés. Adaptation à la teneur en protéines du régime. (Pancreatic secretion in the fistulated pig. Adaptation to the diet protein content). Annales de Biologie Animale, Biochimie, Biophysique 12, 233241.CrossRefGoogle Scholar
Dagorn, J. C. & Lahaie, R. G. (1981). Dietary regulation of pancreatic protein synthesis I. Rapid and specific modulation of enzyme synthesis by changes in dietary composition. Biochimica et Biophysica Acta 654, 111118.CrossRefGoogle ScholarPubMed
Dam, H. & Christensen, F. (1961). Alimentary production of gallstones in hamster. Zeitschrift für Ernährungswissenschaft 10, 3641.CrossRefGoogle Scholar
Dam, H., Kruze, I., Krogh Jensen, M. & Kallehauge, H. E. (1967). Studies on human bile. II. Influence of two different fats on the composition of human bile. Scandinavian Journal of Clinical and Laboratory Investigation 19, 367378.CrossRefGoogle ScholarPubMed
Davis, J. W., Elliott, W. H., Foelsch, J. M. & Ruminski, P. (1977). Role of diet on composition of rat bile. Federation Proceedings 36, 1143.Google Scholar
Deschodt-Lanckman, M., Robberecht, P., Camus, J. & Christophe, J. (1971). Short-term adaptation of pancreatic hydrolases to nutritional and physiological stimuli in adult rats. Biochimie 53, 789796.CrossRefGoogle ScholarPubMed
Desnuelle, P., Reboud, J. P. & Ben Abdeljill, A. (1962). Influence of the composition of the diet on the enzyme content of rat pancreas. In The Exocrine Pancreas Normal and Abnormal Functions, pp. 90114 [Reuck, A. V. S. and Cameron, M. P. editors]. London: Ciba Foundation.CrossRefGoogle Scholar
Dick, J. & Felber, J. P. (1975). Specific hormonal regulation by food of the pancreas (amylase and trypsin) secretions. Hormone and Metabolic Research 7, 161166.CrossRefGoogle Scholar
DiMagno, E. P., Go, V. L. W. & Summerskill, W. H. J. (1973). Relations between pancreatic enzyme outputs and malabsorption in severe pancreatic insufficiency. New England Journal of Medicine 288, 813815.CrossRefGoogle ScholarPubMed
Douglas, B. R., Woutersen, R. A., Jansen, J. B. M. J., De Jong, A. J. L. & Lamers, C. B. H. W. (1988). The influence of different nutrients on plasma cholecystokinin levels in the rat. Experientia 44, 2123.CrossRefGoogle ScholarPubMed
Dowling, R. H., Cowley, D., White, J. & Campell, C. B. (1971). The effect of dietary fat on bile composition in monkeys with an intact enterohepatic circulation (EHC). European Journal of Clinical Investigation 1, 369370 Abstr.Google Scholar
Dudrick, S. J., Wilmore, D. W., Steiger, E., Mackie, J. A. & Fitts, W. J. (1970). Spontaneous closure of traumatic pancreato-duodenal fistulas with total intravenous nutrition. Journal of Traumatology 10, 542543.Google Scholar
Edelman, K. & Valenzuela, J. E. (1983). Effect of intravenous lipid on human pancreatic secretion. Gastroenterology 85, 10631066.CrossRefGoogle ScholarPubMed
Emde, C., Liehr, R. M., Gregor, M., Pleul, O., Riecken, E. O. & Menge, H. (1985). Lack of adaptive change in human pancreatic amylase and lipase secretion in response to high-carbohydrate, low-fat diet applied by a 10-day continuous intraduodenal infusion. Digestive Diseases and Sciences 30, 204210.CrossRefGoogle ScholarPubMed
Falaiye, J. M. (1978). The dietary fibre theory and bile salt pattern in Nigerians. African Journal of Medicine and Medical Sciences 7, 151155.Google ScholarPubMed
Fondacaro, J. D. (1983). Influence of dietary lipids on intestinal bile acid absorption. Proceedings of the Society for Experimental Biology and Medicine 173, 118124.CrossRefGoogle ScholarPubMed
Fondacaro, J. D. & Wolcott, R. H. (1981). Effects of dietary nutrients on intestinal taurocholic acid absorption. Proceedings of the Society for Experimental Biology and Medicine 168, 276281.CrossRefGoogle ScholarPubMed
Frexinos, J. (1981). Les fibres alimentaires en pathologie bilio-pancréatique. (Dietary fibres in bilio-pancreatic disease). Revue Française de Gastroentérologie 165, 1318.Google Scholar
Gardiner, B. N. & Small, D. M. (1972). The effects of secretin (SEC) and cholecystokinin (CCK) on secretion of bile salts (BS) and biliary lipids. Clinical Research 20, 454 Abstr.Google Scholar
Gidez, L. I. (1973). Effect of dietary fat on pancreatic lipase levels in the rat. Journal of Lipid Research 14, 169177.CrossRefGoogle ScholarPubMed
Giorgi, D., Bernard, J. P., Lapointe, R. & Dagorn, J. C. (1984). Regulation of amylase messenger RNA concentration in rat pancreas by food content. EMBO Journal 3, 15211524.CrossRefGoogle ScholarPubMed
Giorgi, D., Lapointe, R., Bernard, J. P. & Dagorn, J. C. (1983). Transcriptional regulation of pancreatic enzyme adaptation to diet. Digestion 28, 3031 Abstr.Google Scholar
Giorgi, D., Renaud, W., Bernard, J. P. & Dagorn, J. C. (1985). Regulation of proteolytic enzyme activities and concentrations in rat pancreas by food content. Biochemical and Biophysical Research Communications 127, 937942.CrossRefGoogle ScholarPubMed
Girard-Globa, A. & Simond-Cote, E. (1977). Nutritional and circadian variations in lipase activity and colipase saturation in rat pancreas. Annales de Biologie Animale, Biochimie, Biophysique 17, 539542.CrossRefGoogle Scholar
Goodridge, A. G. (1987). Dietary regulation of gene expression: enzymes involved in carbohydrate and lipid metabolism. Annual Review of Nutrition 7, 157185.CrossRefGoogle ScholarPubMed
Green, G. M., Levan, V. H. & Liddle, R. A. (1986). Plasma cholecystokinin and pancreatic growth during adaptation to the diet. American Journal of Physiology 251, G70G74.Google Scholar
Green, G. M. & Miyasaka, K. (1983). Rat pancreatic response to intestinal infusion of intact and hydrolyzed protein. American Journal of Physiology 245, G394G398.Google ScholarPubMed
Grossman, M. I., Greengard, H. & Ivy, A. C. (1944). On the mechanism of the adaptation of pancreatic enzymes to dietary composition. American Journal of Physiology 141, 3841.CrossRefGoogle Scholar
Grundy, S. M. & Metzger, A. L. (1972). A physiological method for estimation of hepatic secretion of biliary lipids in man. Gastroenterology 62, 12001217.CrossRefGoogle ScholarPubMed
Heaton, K. W., Wicks, A. C. B. & Yeates, J. (1977). Bile composition in relation to race and diet: studies in Rhodesian Africans and British subjects. In Bile Acid Metabolism in Health and Disease, pp 197202 [Paumgartner, G. and Stiehl, A., editors]. Lancaster: MTP Press.Google Scholar
Hepner, G. W. (1975). Altered bile acid metabolism in vegetarians. American Journal of Digestive Diseases 20, 935940.CrossRefGoogle ScholarPubMed
Hillman, L. C., Peters, S. G., Fisher, C. A. & Pomare, E. W. (1983). Dietary effects of pectin, cellulose and lignin on stool pH, transit time and weight. British Journal of Nutrition 50, 189195.CrossRefGoogle ScholarPubMed
Hillman, L. C., Peters, S. G., Fisher, C. A. & Pomare, E. W. (1986). Effects of the fibre components pectin, cellulose, and lignin on bile salt metabolism and biliary lipid composition in man. Gut 27, 2936.CrossRefGoogle ScholarPubMed
Hofmann, A. F. (1977). The enterohepatic circulation of bile acids in man. Clinics in Gastroenterology 6, 324.CrossRefGoogle ScholarPubMed
Hofmann, A. F., Grundy, S. M., Lachin, J. M., Lan, S-P., Baum, R. A., Hanson, R. F., Hersh, T., Hightower, N. C., Marks, J. W., Mekhjian, H., Shaefer, R. A., Soloway, R. D., Thistle, J. L., Thomas, F. B. & Tyor, M. P. (1982). Pretreatment biliary lipid composition in white patients with radiolucent gallstones in the National Cooperative Gallstone Study. Gastroenterology 83, 738752.CrossRefGoogle ScholarPubMed
Hopman, W. P. M., De Jong, A. J. L., Rosenbusch, G., Jansen, J. B. M. J. & Lamers, C. B. H. W. (1987). Elemental diet stimulates gallbladder contraction and secretion of cholecystokinin and pancreatic polypeptide in man. Digestive Diseases and Sciences 32, 4549.CrossRefGoogle ScholarPubMed
Hopman, W. P. M., Jansen, J. B. M. J. & Lamers, C. B. H. W. (1985). Comparative study of the effects of equal amounts of fat, protein, and starch on plasma cholecystokinin in man. Scandinavian Journal of Gastroenterology 20, 843847.CrossRefGoogle ScholarPubMed
Houghton, M. R., Morgan, R. G. H. & Gracey, M. (1983). Effects of long-term dietary modifications on pancreatic enzyme activity. Journal of Pediatric Gastroenterology and Nutrition 2, 548554.Google ScholarPubMed
Howard, F. & Yudkin, S. (1963). Effects of dietary change upon the amylase and trypsin activities of the rat pancreas. British Journal of Nutrition 17, 281295.CrossRefGoogle ScholarPubMed
Huijbregts, A. W. M., Van Berge-Henegouwen, G. P., Hectors, M. P. C., Van Schaik, A. & Van Der Werf, S. D. J. (1980 a). Effects of a standardized wheat bran preparation on biliary lipid composition and bile acid metabolism in young healthy males. European Journal of Clinical Investigation 10, 451458.CrossRefGoogle ScholarPubMed
Huijbregts, A. W. M., Van Schaik, A., Van Berge-Henegouwen, G. P. & Van Der Werf, S. D. J. (1980 b). Serum lipids, biliary lipid composition, and bile acid metabolism in vegetarians as compared to normal controls. European Journal of Clinical Investigation 10, 443449.CrossRefGoogle ScholarPubMed
Ikegami, S., Harada, H., Tsuchihashi, N., Nagayama, S., Nishide, E. & Innami, S. (1984). Effect of indigestible polysaccharides on pancreatic exocrine secretion and biliary output. Journal of Nutritional Science and Vitaminology 30, 515523.CrossRefGoogle ScholarPubMed
Isaacs, P. E. T., Ladas, S., Forgacs, I. C., Dowling, R. H., Ellam, S. V., Adrian, T. E. & Bloom, S. R. (1987). Comparison of effects of ingested medium- and long-chain triglyceride on gallbladder volume and release of cholecystokinin and other gut peptides. Digestive Diseases and Sciences 32, 481486.CrossRefGoogle ScholarPubMed
Jadidi, N., Sambrook, I. E., Owen, R. W. & Gurr, M. I. (1988). Effect of dietary saturated and polyunsaturated fats on the composition of bile in pigs. Proceedings of the Nutrition Society 47, 99A.Google Scholar
Juste, C., Corring, T. & Breant, Ph. (1979). Excrétion biliaire chez le porc: niveau et réponse au repas (Biliary secretion in the pig: rate of output and response to feeding). Annales de Biologie Animale, Biochimie, Biophysique 19, 119124.CrossRefGoogle Scholar
Juste, C., Corring, T. & Demarne, Y. (1985). Effet du régime lipidique sur la saturation de la bile en cholestérol chez le porc. (Effect of the lipid diet on bile saturation with cholesterol in pig). Reproduction, Nutrition, Développement 25, 815 Abstr.CrossRefGoogle Scholar
Juste, C., Demarne, Y. & Corring, T. (1983). Response of bile flow, biliary lipids and bile acid pool in the pig to quantitative variations in dietary fat. Journal of Nutrition 113, 16911701.CrossRefGoogle ScholarPubMed
Juste, C., Demarne, Y. & Corring, T. (1986). Effect du niveau et de la qualité de l'ingéré lipidique sur la sécrétion biliaire du porc en croissance. (Effect of level and source of dietary lipid on the biliary secretion in the growing pig.) Reproduction, Nutrition, Développement 26, 1191 Abstr.CrossRefGoogle Scholar
Kawamoto, T., Okano, G. & Akino, T. (1980). Biosynthesis and turnover of individual molecular species of phosphatidylcholine in liver and bile. Biochimica et Biophysica Acta 619, 2034.Google ScholarPubMed
Kern, H. F., Rausch, U. & Scheele, G. A. (1987). Regulation of gene expression in pancreatic adaptation to nutritional substrates or hormones. Gut 28, Suppl., 8994.CrossRefGoogle ScholarPubMed
Klapdor, R. & Hein, C. H. (1982). Addition of fiber (wheat bran, bassorin) to the standard food does not influence biliary lipid composition in piglets. Research in Experimental Medicine 180, 2124.CrossRefGoogle Scholar
Koelz, H. R., Sherrill, B. C., Turley, S. D. & Dietschy, J. M. (1982). Correlation of low and high density lipoprotein binding in vivo with rates of lipoprotein degradation in the rat. Journal of Biological Chemistry 257, 80618072.CrossRefGoogle ScholarPubMed
Konturek, S. J., Tasler, J., Cieszkowski, M., Jaworek, J. & Konturek, J. (1979). Intravenous amino acids and fat stimulate pancreatic secretion. American Journal of Physiology 236, E678E684.Google ScholarPubMed
Korc, M., Owerbach, D., Quinto, C. & Rutter, W. J. (1981). Pancreatic islet-acinar cell interaction: amylase messenger RNA levels are determined by insulin. Science 213, 351353.CrossRefGoogle ScholarPubMed
Ladas, S. D., Isaacs, P. E. T., Murphy, G. M. & Sladen, G. E. (1984). Comparison of the effects of medium and long chain triglyceride containing liquid meals on gallbladder and small intestinal function in normal man. Gut 25, 405411.CrossRefGoogle ScholarPubMed
Lafont, H., Lairon, D., Vigne, J. L., Chanussot, F., Chabert, C., Portugal, H., Pauli, A. M., Crotte, C. & Hauton, J. C. (1985). Effect of wheat bran, pectin and cellulose on the secretion of bile lipids in rats. Journal of Nutrition 115, 849855.CrossRefGoogle ScholarPubMed
Lahaie, R. G. & Dagorn, J. C. (1981). Dietary regulation of pancreatic protein synthesis II. Kinetics of adaptation of protein synthesis and its effect on enzyme content. Biochimica et Biophysica Acta 654, 119123.CrossRefGoogle ScholarPubMed
Langlois, A., Corring, T. & Fevrier, C. (1987). Effects of wheat bran on exocrine pancreas secretion in the pig. Reproduction, Nutrition, Développement 27, 929939.CrossRefGoogle ScholarPubMed
Lebenthal, E., Choi, T. S. & Lee, P. C. (1981). The development of pancreatic function in premature infants after milk-based and soy-based formulas. Pediatric Research 15, 12401244.CrossRefGoogle ScholarPubMed
Lewis, B. (1958). Effect of certain dietary oils on bile acid secretion and serum cholesterol. Lancet i, 10901092.CrossRefGoogle Scholar
Liddle, R. A., Green, G. M., Conrad, C. K. & Williams, J. A. (1985). CCK response to food is species specific: fat and amino acids do not stimulate CCK release in the rat. Gastroenterology 88, 1476 Abst.Google Scholar
Low-Beer, T. S. & Nutter, S. (1978). Colonic bacterial activity, biliary cholesterol saturation and pathogenesis of gallstones. Lancet ii, 10631064.CrossRefGoogle Scholar
McGovern, R. F. & Quackenbush, F. W. (1973). Influence of dietary fat on bile acid secretion of rats after portal injections of 3H-cholesterol and [4-14C]cholesteryl esters. Lipids 8, 473478.CrossRefGoogle ScholarPubMed
Malagelada, J. R., DiMagno, E. P., Summerskill, W. H. J. & Go, V. L. W. (1976). Regulation of pancreatic and gallbladder functions by intraluminal fatty acids and bile acids in man. Journal of Clinical Investigation 58, 493499.CrossRefGoogle ScholarPubMed
Marcus, S. N. & Heaton, K. W. (1986 a). Effects of a new, concentrated wheat fibre preparation on intestinal transit, deoxycholic acid metabolism and the composition of bile. Gut 27, 893900.CrossRefGoogle ScholarPubMed
Marcus, S. N. & Heaton, K. W. (1986 b). Intestinal transit rate, deoxycholic acid and the cholesterol saturation of bile-three interrelated factors. Gut 27, 550558.CrossRefGoogle Scholar
Meyer, J. H. & Kelly, G. A. (1976). Canine pancreatic responses to intestinally perfused proteins and protein digests. American Journal of Physiology 231, 682691.CrossRefGoogle ScholarPubMed
Meyer, J. H., Kelly, G. A. & Jones, R. S. (1976). Canine pancreatic response to intestinally perfused oligopeptides. American Journal of Physiology 231, 678681.CrossRefGoogle ScholarPubMed
Meyer, P. D., DenBesten, L. & Mason, E. E. (1979). The effects of a high-fiber diet on bile acid pool size, bile acid kinetics, and biliary lipid secretory rates in the morbidly obese. Surgery 85, 311316.Google ScholarPubMed
Morisset, J. & Dunnigan, J. (1967). Exocrine pancreas adaptation to diet in vagotomized rats. Revue Canadienne de Biologie 26, 1116.Google ScholarPubMed
Mourot, J. & Corring, T. (1979). Adaptation of the lipase-colipase system to dietary lipid content in pig pancreatic tissue. Annales de Biologie Animale, Biochimie, Biophysique 19, 119124.CrossRefGoogle Scholar
Noirot, S., Ouagued, M. & Girard-Globa, A. (1981). Comparative effects of some carbohydrates on serum sugars, triglycerides and digestive hydrolases. Reproduction, Nutrition, Développement 21, 727735.CrossRefGoogle ScholarPubMed
Paul, R. & Ganguly, J. (1976). Effect of unsaturated lipids on the bile flow and biliary excretion of cholesterol and bile salts in rats. Chemistry and Physics of Lipids 17, 315323.CrossRefGoogle ScholarPubMed
Pavlov, I. P. (1879). The Work of Digestive Glands, Translated by Thompson|W. H. (1910). London: Griffin and Co.Google Scholar
Payne, D., Juste, C., Corring, T. & Fevrier, C. (1989). Effects of wheat bran on bile secretion in the pig. Nutrition Reports International (In the Press).Google Scholar
Pinsky, S. D., Laforge, K. S. & Scheele, G. (1985). Differential regulation of trypsinogen mRNA translation: full-length mRNA sequences encoding two oppositely charged trypsinogen isoenzymes in the dog pancreas. Molecular and Cellular Biology 5, 26692676.Google ScholarPubMed
Pomare, E. W. (1983). Fibre and bile acid metabolism. In Fibre in Human and Animal Nutrition, pp. 179182 [Wallace, G. and Bell, L., editors]. Wellington: Royal Society of New Zealand.Google Scholar
Pomare, E. W., Heaton, K. W., Low-Beer, T. S. & Espiner, H. J. (1976). The effect of wheat bran upon bile salt metabolism and upon the lipid composition of bile in gallstone patients. American Journal of Digestive Diseases 21, 521526.CrossRefGoogle ScholarPubMed
Pomare, E. W. & Low-Beer, T. S. (1975). The selective inhibition of chenodeoxycholate synthesis by cholate metabolites in man. Clinical Science and Molecular Medicine 48, 315321.Google ScholarPubMed
Poort, S. R. & Poort, C. (1980). Effect of diet composition on the protein synthetic pattern of the rat pancreas after a feeding period of five days. Biochimica et Biophysica Acta 606, 138147.CrossRefGoogle ScholarPubMed
Poort, S. R. & Poort, C. (1981). Effect of feeding diets of different composition on the protein synthetic pattern of the rat pancreas. Journal of Nutrition 111, 14751479.CrossRefGoogle ScholarPubMed
Portman, O. W. & Mann, G. V. (1955). The disposition of taurine-S35 and taurocholate-S36 in the rat: dietary influences. Journal of Biological Chemistry 213, 733743.CrossRefGoogle ScholarPubMed
Prost, J., Gillet, M. & Belleville, J. (1978). Effets de régimes hyperlipidiques et isoprotéiques sur les activités de la lipase, de la phospholipase A2, de la cholestérolestérase, de la trypsine et de l'amylase du suc pancréatique et du pancréas de rat. (Effects of isoproteic and lipid rich diets on lipase, phospholipase A2, cholesterolesterase, trypsin and amylase activities in rat pancreatic juice and pancreas.) Journal de Physiologie 74, 743754.Google Scholar
Puigserver, A., Wicker, C. & Gaucher, C. (1985). Aspects moléculaires de l'adaptation des enzymes pancréatiques et intestinales au régime alimentaire (Molecular aspects of dietary adaptation of pancreatic and intestinal hydrolases). Reproduction, Nutrition, Développement 25, 787802.CrossRefGoogle Scholar
Ramesha, C. S., Paul, R. & Ganguly, J. (1980). Effect of dietary unsaturated oils on the biosynthesis of cholesterol, and on biliary and fecal excretion of cholesterol and bile acids in rats. Journal of Nutrition 110, 21492158.CrossRefGoogle ScholarPubMed
Reboud, J. P., Marchis-Mouren, G., Pasero, L., Cozzone, P. & Desnuelle, P. (1966). Adaptation de la vitesse de biosynthése de l'amylase pancréatique et du chymotrypsinogène à des régimes riches en amidon ou en protéines. (Biosynthesis rate adaptation of pancreatic amylase and chymotrypsinogen to starch-rich or proteinrich diets.) Biochimica et Biophysica Acta 117, 351367.CrossRefGoogle Scholar
Redinger, R. N., Hermann, A. H. & Small, D. M. (1973). Primate biliary physiology. X. Effects of diet and fasting on biliary lipid secretion and relative composition and bile salt metabolism in the rhesus monkey. Gastroenterology 64, 610621.CrossRefGoogle ScholarPubMed
Renaud, W., Giorgi, D., Iovanna, J. & Dagorn, J. C. (1986). Regulation of concentrations of mRNA for amylase, trypsinogen I and chymotrypsinogen B in rat pancreas by secretagogues. Biochemical Journal 235, 305308.CrossRefGoogle ScholarPubMed
Rigaud, D. & Royer, I. (1988). Les fibres alimentaires: réalités et fictions (Dietary fibres: reality and fiction). Gastroentérologie Clinique et Biologique 12, 133148.Google Scholar
Riottot, M., Sacquet, E. & Leprince, C. (1984). Effect of wheat bran upon gastro-intestinal transit in germ-free and conventional rats. Digestion 29, 3741.CrossRefGoogle ScholarPubMed
Robberecht, P., Deschodt-Lanckman, M., Camus, J. & Christophe, J. (1971). Induction diététique des hydrolases pancréatiques chez le rat sevré (Dietary induction of pancreatic hydrolases in the weaned rat). Archives Internationales de Physiologie et de Biochimie 79, 206207.Google Scholar
Sabb, J. E., Godfrey, P. M. & Brannon, P. M. (1986). Adaptive response of rat pancreatic lipase to dietary fat: effects of amount and type of fat. Journal of Nutrition 116, 892899.CrossRefGoogle ScholarPubMed
Sacquet, E., Leprince, C. & Riottot, M. (1982 a). Dietary fiber and cholesterol and bile acid metabolisms in axenic (germfree) and holoxenic (conventional) rats I. Effect of wheat bran. Reproduction, Nutrition, Développement 22, 291305.CrossRefGoogle Scholar
Saito, Y., Tokutake, K., Matsuno, S., Noto, N., Honda, T. & Sato, T. (1978). Effects of hypertonic glucose and amino acid infusions on pancreatic exocrine function. Tohoku Journal of Experimental Medicine 124, 99115.CrossRefGoogle ScholarPubMed
Saraux, B., Girard-Globa, A., Ouagued, M. & Vacher, D. (1982). Response of the exocrine pancreas to quantitative and qualitative variations in dietary lipids. American Journal of Physiology 243, G10G15.Google ScholarPubMed
Sarles, H., Badetti, J. & Greusard, C. (1960). Etude de l'action des corps gras sur la contraction vésiculaire. I. Comparaison de 'action des dérivés des divers corps gras. (Study of the effects of fat on the gallbladder contraction. I. Comparison of the effects of various fat byproducts.) Nutritio et Dieta 2, 219222.Google Scholar
Sarles, H., Hauton, J., Planche, N. E., Lafont, H. & Gerolami, A. (1970). Diet, cholesterol gallstones, and composition of the bile. American Journal of Digestive Diseases 15, 251260.CrossRefGoogle ScholarPubMed
Scheele, G. (1986). Regulation of gene expression in the exocrine pancreas. In The Exocrine Pancreas: Biology, Pathobiology, and Diseases, pp. 5567 [Go, V. L. W., Gardner, J. D., Brooks, F. P., Lebenthal, E., DiMagno, E. P. and Scheele, G. A., editors]. New York: Raven Press.Google Scholar
Schick, J., Kern, H. & Scheele, G. (1984 a). Hormonal stimulation in the exocrine pancreas results in coordinate and anticoordinate regulation of protein synthesis. Journal of Cell Biology 99, 15691574.CrossRefGoogle ScholarPubMed
Schick, J., Verspohl, R., Kern, H. & Scheele, G. (1984 b). Two distinct adaptive responses in the synthesis of exocrine p178ancreatic enzymes to inverse changes in protein and carbohydrate in the diet. American Journal of Physiology 247, G611G616.Google ScholarPubMed
Schneeman, B. O. (1979). Acute pancreatic and biliary response to protein, cellulose, and pectin. Nutrition Reports International 20, 4548.Google Scholar
Schneeman, B. O., Chang, I., Smith, L. & Lyman, R. L. (1977). Effect of dietary aminoacids, casein and soybean trypsin inhibitor on pancreatic protein secretion in rats. Journal of Nutrition 107, 281288.CrossRefGoogle ScholarPubMed
Schneeman, B. O. & Gallaher, D. (1980). Changes in small intestinal digestive enzyme activity and bile acids with dietary cellulose in rats. Journal of Nutrition 110, 584590.CrossRefGoogle ScholarPubMed
Sheard, N. F. & Schneeman, B. O. (1980). Wheat bran's effect on digestive enzyme activity and bile acid levels in rats. Journal of Food Science 45, 16451648.CrossRefGoogle Scholar
Simoes Nunes, C. (1982). Lack of pancreatic enzyme adaptation to diet carbohydrates and lipids after proximal small intestine bypass in the pig. Digestion 25, 108 Abstr.Google Scholar
Simoes Nunes, C. (1986). Adaptation of pancreatic lipase to the amount and nature of dietary lipids in the growing pig. Reproduction, Nutrition, Développement 26, 12731280.CrossRefGoogle Scholar
Simoes Nunes, C. & Corring, T. (1979). Pancreatic exocrine secretion in the pig following test meals of different composition and intraduodenal loads of glucose and maltose. Hormone and Metabolic Research 11, 346351.CrossRefGoogle Scholar
Simoes Nunes, C. & Corring, T. (1980). Rôle de la muqueuse duodénale dans l'adaptation de l'α-amylase pancréatique au régime alimentaire chez le porc. (Role of the duodenal mucosa in adaptation of pancreatic α-amylase to diet in the pig). Reproduction, Nutrition, Développement 20, 12371245.CrossRefGoogle Scholar
Simoes Nunes, C. & Corring, T. (1981). Effects sur la sécrétion pancréatique exocrine du porc de l'administration intraveineuse prolongée de glucose: application à l'étude des mécanismes de l'adaptation au régime alimentaire. (Effects of prolonged intravenous glucose perfusion on pig pancreatic exocrine secretion: application to study of diet adaptation mechanisms). Reproduction, Nutrition, Développement 21, 705714.CrossRefGoogle Scholar
Sklan, D. & Budowski, P. (1977). The effect of lipids on taurocholate absorption from intestinal loops in the rat. Lipids 12, 193197.CrossRefGoogle ScholarPubMed
Stabile, B. E., Borzatta, M., Stubbs, R. S. & Debas, H. T. (1984). Intravenous mixed aminoacids and fats do not stimulate exocrine pancreatic secretion. American Journal of Physiology 246, G274G280.Google Scholar
Story, J. A. & Kritchevsky, D. (1978). Bile acid metabolism and fiber. American Journal of Clinical Nutrition 31, S199S202.CrossRefGoogle ScholarPubMed
Stratowa, C. & Rutter, W. J. (1986). Selective regulation of trypsin gene expression by calcium and by glucose starvation in a rat exocrine pancreas cell line. Proceedings of the National Academy of Sciences 83, 42924296.CrossRefGoogle Scholar
Sturdevant, R. A. L., Pearce, M. L. & Dayton, S. (1973). Increased prevalence of cholelithiasis in men ingesting a serum cholesterol lowering diet. New England Journal of Medicine 288, 2427.CrossRefGoogle ScholarPubMed
Thornton, J. R., Emmett, P. M. & Heaton, K. W. (1983). Diet and gallstones: effects of refined and unrefined carbohydrate diets on bile cholesterol saturation and bile acid metabolism. Gut 24, 26.CrossRefGoogle Scholar
Valette, P., Corring, T., Juste, C. & Levenez, F. (1989). Short-term effects of wheat bran incorporation into the diet on bile secretion in the pig. Nutrition Reports International (In the Press).Google Scholar
Vandermeers-Piret, M. C., Vandermeers, A., Wijns, W., Rathe, J. & Christophe, J. (1977). Lack of adaptation of pancreatic colipase in rats and mice. American Journal of Physiology 232, E131E135.Google ScholarPubMed
Vidon, N., Hecketsweiler, P., Butel, J. & Bernier, J. J. (1978). Effect of continuous jejunal perfusion of elemental and complex nutritional solutions on pancreatic enzyme secretion in human subjects. Gut 19, 194198.Google Scholar
Watts, J. McK., Jablonski, P. & Toouli, J. (1978). The effect of added bran to the diet on the saturation of bile in people without gallstones. American Journal of Surgery 135, 321324.CrossRefGoogle Scholar
Wechsler, J. G., Wenzel, H., Swobodnik, W. & Ditschuneit, H. (1987). Influence of increased fibre intake on biliary lipids. Scandinavian Journal of Gastroenterology 22, Suppl. 129, 185191.CrossRefGoogle Scholar
Wicker, C. & Puigserver, A. (1987). Effects of inverse changes in dietary lipid and carbohydrate on the synthesis of some pancreatic secretory proteins. European Journal of Biochemistry 162, 2530.CrossRefGoogle ScholarPubMed
Wicker, C., Puigserver, A., Rausch, U., Scheele, G. & Kern, H. (1985). Multiple-level caerulein control of the gene expression of secretory proteins in the rat pancreas. European Journal of Biochemistry 151, 461466.CrossRefGoogle ScholarPubMed
Wicker, C., Puigserver, A. & Scheele, G. (1984). Dietary regulation of levels of active mRNA coding for amylase and serine protease zymogens in the rat pancreas. European Journal of Biochemistry 139, 381387.CrossRefGoogle ScholarPubMed
Wicker, C., Scheele, G. & Puigserver, A. (1983). Adaptation au régime alimentaire du niveau des ARNm codant pour l'amylase et les protéases á sérine pancréatiques chez le rat. (Dietary adaptation of levels of mRNA coding for pancreatic amylase and serine proteases in the rat.) Comptes Rendus des Séances de l' Académie des Sciences 297, 281284.Google Scholar
Wicker, C., Scheele, G. A. & Puigserver, A. (1988). Pancreatic adaptation to dietary lipids is mediated by changes in lipase mRNA. Biochimie 70, 12771283.CrossRefGoogle ScholarPubMed
Wicks, A. C. B., Yeates, J. & Heaton, K. W. (1978). Bran and bile: time-course of changes in normal young men given a standard dose. Scandinavian Journal of Gastroenterology 13, 289292.CrossRefGoogle ScholarPubMed
Wilson, J. D. & Siperstein, M. D. (1959). Effect of saturated and unsaturated fats on hepatic synthesis and biliary excretion of cholesterol by the rat. American Journal of Physiology 196, 599602.CrossRefGoogle ScholarPubMed
Wood, J. G., Hoang, H. D., Bussjaeger, L. J. & Solomon, T. E. (1988). Effect of neurotensin on pancreatic and gastric secretion and growth in rats. Pancreas 3, 332339.CrossRefGoogle ScholarPubMed