Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T21:15:14.401Z Has data issue: false hasContentIssue false

The Use of Micro-Raman Spectroscopy to Monitor High-Pressure High-Temperature Annealing of Ion-Implanted GaN Films

Published online by Cambridge University Press:  03 September 2012

M. Kuball
Affiliation:
H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
J.M. Hayes
Affiliation:
H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
T. Suski
Affiliation:
UNIPRESS, Polish Academy of Sciences, Solowska 29, 01-142 Warsaw, Poland
J. Jun
Affiliation:
UNIPRESS, Polish Academy of Sciences, Solowska 29, 01-142 Warsaw, Poland
H.H. Tan
Affiliation:
Department of Electronic Materials and Engineering, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia
J.S. Williams
Affiliation:
Department of Electronic Materials and Engineering, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia
C. Jagadish
Affiliation:
Department of Electronic Materials and Engineering, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia
Get access

Abstract

We have investigated the high-pressure high-temperature annealing of Mg/P-implanted GaN films using visible and ultraviolet (UV) micro-Raman spectroscopy. The results illustrate the use of Raman spectroscopy to monitor processing of GaN where fast feedback is required. The structural quality and the stress in ion-implanted GaN films was monitored in a 40nm-thin surface layer of the sample as well as averaged over the sample layer thickness. We find the nearly full recovery of the crystalline quality of ion-implanted GaN films after annealing at 1400-1500°C under nitrogen overpressures of 1.5GPa. No significant degradation effects occurred in the GaN surface layer during the annealing. The high nitrogen overpressures proved very effective in preventing the nitrogen out-diffusion from the GaN surface. Stress introduced during the annealing was monitored. Raman spectra of ion-implanted GaN films were investigated at different temperatures and excitation wavelengths to study the GaN phonon density of states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Appl. Phys. Lett. 72, 211 (1998).Google Scholar
[2] Yoshida, S. and Suzuki, J., Jpn. J. Appl. Phys. 37, L482 (1998).Google Scholar
[3] Adesida, I., Youtsey, C., Ping, A.T., Khan, F., Romano, L.T., and Bulman, G., MRS Internet J. Nitride Semiconductor Res. 4S1, G1.4 (1999); M. Kuball, F.H. Morrissey, M. Benyoucef, I. Harrison, D. Korakakis, and C.T. Foxon, Phys. Stat. Sol. (a) 176, 355 (1999).Google Scholar
[4] Ren, F., in GaN and Related Material, Optoelectronic properties of semiconductors and superlattices, Vol. 2, edited by Manasreh, M.O. (Gordon and Breach Science Publishers, Amsterdam, 1997), pp. 433469.Google Scholar
[5] Nakamura, S., Mukai, T., Senoh, M., and Iwasa, N., Jpn. J. Appl. Phys. 31, L139 (1992).Google Scholar
[6] Zolper, J.C., Tan, H.H., Williams, J.S., Zou, J., Cockayne, D.J.H., Pearton, S.J., Crawford, M. Hagerott, and Karlicek, R.F. Jr., Appl. Phys. Lett. 70, 2729 (1997); H.H. Tan, J.S. Williams, J. Zou, D.J.H. Cockayne, S.J. Pearton, J.C. Zolper, and R.A. Stall, Appl. Phys. Lett. 72, 1190 (1998).Google Scholar
[7] Cao, X.A., Abernathy, C.R., Singh, R.K., Pearton, S.J., Fu, M., Sarvepalli, V., Sekhar, J.A., Zolper, J.C., Rieger, D.J., Han, J., Drummond, T.J., Shul, R.J., and Wilson, R.G., Appl. Phys. Lett. 73, 229 (1998).Google Scholar
[8] Suski, T., Jun, J., Leszcyński, M., Teisseyre, H., Strite, S., Rockett, A., Pelzmann, A., Kamp, M., amd Ebeling, K.J., J. Appl. Phys. 84, 1155 (1998).Google Scholar
[9] Suski, T., Jun, J., Leszczynski, M., Teisseyre, H., Gryzegory, I., Porowski, S., Baranowski, J.M., Rocket, A., Strite, S., Stonert, A., Turos, A., Tan, H.H., Williams, J.S., and Jagadish, C., Mat. Res. Soc. Symp. Proc. 492, 949 (1998).Google Scholar
[10] Demangeot, F., Frandon, J., Renucci, M.A., Briot, O., Gil, B., Aulombard, R.-L., MRS Internet J. Nitride Semicond. Res. 1, 23 (1996).Google Scholar
[11] Muth, J.F., Lee, J.H., Shmagin, I.K., Kolbas, R.M., Casey, H.C. Jr., Keller, B.P., Mishra, U.K., and DenBaars, S.P., Appl. Phys. Lett., 71, 2572 (1997).Google Scholar
[12] Cardona, M. in Light Scattering in Solids II, edited by Cardona, M. and Güntherodt, G. (Springer, Heidelberg, 1982), pp. 19178.Google Scholar
[13] Liu, M.S., Bursill, L.A., Prawer, S., Nugent, K.W., Tong, Y.Z., Zhang, G.Y., Appl. Phys. Lett. 74, 3125 (1999).Google Scholar
[14] Nipko, J.C., Loong, C.-K., Balkas, C.M., and Davis, R.F., Appl. Phys. Lett. 73, 34 (1998).Google Scholar
[15] Limmer, W., Ritter, W., Sauer, R., Menschling, B., Liu, C., and Rauschenbach, B., Appl. Phys. Lett. 72, 2589 (1998).Google Scholar
[16] Kuball, M., Demangeot, F., Frandon, J., Renucci, M.A., Massies, J., Grandjean, N., Aulombard, R.L., and Briot, O., Appl. Phys. Lett. 73, 960 (1998).Google Scholar
[17] Hayes, J.M., Kuball, M., Bell, A.. Harrison, I., Korakakis, D., and Foxon, C.T., Appl. Phys. Lett. 75, 2097 (1999).Google Scholar