Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T02:12:37.320Z Has data issue: false hasContentIssue false

Thermo-responsive metallo-supramolecular gels based on terpyridine end-functionalized amphiphilic diblock copolymers

Published online by Cambridge University Press:  10 April 2013

Jérémy Brassinne
Affiliation:
Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter (BSMA), Université catholique de Louvain (UCL), Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium.
Charles-André Fustin*
Affiliation:
Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter (BSMA), Université catholique de Louvain (UCL), Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium.
Jean-François Gohy*
Affiliation:
Institute of Condensed Matter and Nanosciences (IMCN), Bio and Soft Matter (BSMA), Université catholique de Louvain (UCL), Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium.
Get access

Abstract

A thermo-responsive hydrogel was prepared on the basis of terpyridine endfunctionalized polystyrene-block-poly(N-isopropylacrylamide) diblock copolymer. As a first level of assembly, the copolymer was dissolved in a selective solvent to yield micelles bearing terpyridine ligands at the extremity of the coronal chains. The second level of self-assembly was triggered upon addition of metal ions to the micellar solution. Mechanical properties of the accordingly obtained micellar gel were finally characterized by rotational rheometry, below and above the lower critical solution temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahn, S., Kasi, R.M., Kim, S.C., Sharma, N. and Zhou, Y., Soft Matter 4, 1151 (2008).Google Scholar
Kopeček, J. and Yang, J.Y., Polym. Int. 56, 1078 (2007).CrossRefGoogle Scholar
Dumitriu, R.P., Mitchell, G.R. and Vasile, C., Polym. Int. 60, 222 (2011).CrossRefGoogle Scholar
Kulawardana, E.U., Kuruwita‐Mudiyanselage, T. and Neckers, D.C., J. Polym. Sci., Part A: Polym. Chem. 47, 3318 (2009).CrossRefGoogle Scholar
Lee, K.Y. and Mooney, D.J., Chem. Rev. 101, 1869 (2001).CrossRefGoogle Scholar
Hoare, T.R. and Kohane, D.S., Polymer 49, 1993 (2008).CrossRefGoogle Scholar
Richter, A., Paschew, G., Klatt, S., Lienig, J., Arndt, K.F. and Adler, H.J.P., Sensors 8, 561 (2008).CrossRefGoogle ScholarPubMed
Eddington, D.T. and Beebe, D.J., Adv. Drug Delivery Rev. 56, 199 (2004).CrossRefGoogle Scholar
Heskins, M. and Guillet, J.E., J. Macromol. Sci., Chem. 2, 1441 (1968).CrossRefGoogle Scholar
Hirokawa, Y. and Tanaka, T., J. Chem. Phys. 81, 6379 (1984).CrossRefGoogle Scholar
Inomata, H., Goto, S., Otake, K. and Saito, S., Langmuir 8, 687 (1992).CrossRefGoogle Scholar
Kokufuta, E., Zhang, Y.Q., Tanaka, T. and Mamada, A., Macromolecules 26, 1053 (1993).CrossRefGoogle Scholar
Goshe, A.J., Steele, I.M., Ceccarelli, C., Rheingold, A.L. and Bosnich, B., Proc. Natl. Acad. Sci. U. S. A. 99, 4823 (2002).CrossRefGoogle Scholar
Beck, J.B. and Rowan, S.J., J. Am. Chem. Soc. 125, 13922 (2003).CrossRefGoogle Scholar
Lehn, J.M., Chem. Soc. Rev. 36, 151 (2007).CrossRefGoogle Scholar
Yao, H.B., Fang, H.Y., Wang, X.H. and Yu, S.H., Chem. Soc. Rev. 40, 3764 (2011).CrossRefGoogle Scholar
Lin, Y. and Mao, C., Front. Mater. Sci. 5, 247 (2011).CrossRefGoogle Scholar
ten Brinke, G., Ruokolainen, J. and Ikkala, O., Adv. Polym. Sci. 207, 113 (2007).CrossRefGoogle Scholar
Krieg, E., Shirman, E., Weissman, H., Shimoni, E., Wolf, S.G., Pinkas, I. and Rybtchinski, B., J. Am. Chem. Soc. 131, 14365 (2009).CrossRefGoogle Scholar
Burattini, S., Colquhoun, H.M., Fox, J.D., Friedmann, D., Greenland, B.W., Harris, P.J.F., Hayes, W., Mackay, M.E. and Rowan, S.J., Chem. Commun. 45, 6717 (2009).CrossRefGoogle Scholar
Brassinne, J., Fustin, C.-A. and Gohy, J.-F., J. Inorg. Organomet. Polym. Mater. 23, 24 (2013).CrossRefGoogle Scholar
Burattini, S., Greenland, B.W., Merino, D.H., Weng, W.G., Seppala, J., Colquhoun, H.M., Hayes, W., Mackay, M.E., Hamley, I.W. and Rowan, S.J., J. Am. Chem. Soc. 132, 12051 (2010).CrossRefGoogle Scholar
Hofmeier, H. and Schubert, U.S., Chem. Commun. 41, 2423 (2005).CrossRefGoogle Scholar
Guillet, P., Mugemana, C., Stadler, F.J., Schubert, U.S., Fustin, C.A., Bailly, C. and Gohy, J.F., Soft Matter 5, 3409 (2009).CrossRefGoogle Scholar
Brassinne, J., Mugemana, C., Guillet, P., Bertrand, O., Auhl, D., Bailly, C., Fustin, C.A. and Gohy, J.F., Soft Matter 8, 4499 (2012).CrossRefGoogle Scholar
Bharatiya, B., Fustin, C.-A. and Gohy, J.-F., Macromol. Chem. Phys. 213, 2253 (2012).CrossRefGoogle Scholar
Jochum, F.D., Brassinne, J., Fustin, C.-A. and Gohy, J.-F., Soft Matter 9, 2314 (2013).CrossRefGoogle Scholar
Piogé, S., Fustin, C.-A. and Gohy, J.-F., Macromol. Rapid Commun. 33, 534 (2012).CrossRefGoogle Scholar