Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-22T17:23:59.998Z Has data issue: false hasContentIssue false

Thermal Expansion of GaN at Low Temperatures - a Comparison of Bulk and Homo- and Heteroepitaxial Layers

Published online by Cambridge University Press:  03 September 2012

Verena Kirchner
Affiliation:
University of Bremen, Institute of Solid State Physics, Bremen, Germany
Heidrun Heinke
Affiliation:
University of Bremen, Institute of Solid State Physics, Bremen, Germany
Sven Einfeldt
Affiliation:
University of Bremen, Institute of Solid State Physics, Bremen, Germany
Detlef Hommel
Affiliation:
University of Bremen, Institute of Solid State Physics, Bremen, Germany
Jaroslaw Z. Domagala
Affiliation:
Polish Academy of Science, Institute of Physics, Dept. of X-ray Studies and Electron Microscopy, Warsaw, Poland
Michal Leszczynski
Affiliation:
High Pressure Research Center, Unipress, Warsaw, Poland
Get access

Abstract

The thermal expansion of different GaN samples is studied by high-resolution Xray diffraction within the temperature range of 10 to 600 K. GaN bulk crystals, a homoepitaxial layer and different heteroepitaxial layers grown by metalorganic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) were investigated. Below 100 K the thermal expansion coefficients (TEC) were found to be nearly zero which has to be taken into account when estimating the thermal strain of GaN layers in optical experiments commonly performed at low temperatures. The homoepitaxial layer and the underlying GaN substrate with a lattice mismatch of –6×10−4 showed identical thermal expansion. The comparison between the temperature behavior of lattice parameters of heteroepitaxial layers and bulk GaN points to a superposition of thermally induced biaxial strain and compressive hydrostatic strain.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rieger, W., Metzger, T., Angerer, H., Dimitrov, R., O. Ambacher and Stutzmann, M., Appl. Phys. Lett., 68, 970 (1996).Google Scholar
2. Shan, W., Hauenstein, R. J., Fischer, A. J., Song, J. J., Perry, W. G., Bremser, M. D., Davis, R. F. and Goldenberg, B., Mat. Res. Soc. Symp. Proc., 449, 841 (1997).Google Scholar
3. Leszczynski, M., Bak-Misiuk, J., Domagala, J. and Suski, T., Mat. Res. Soc. Symp. Proc., 468, 311 (1997).Google Scholar
4. Kisielowski, C., Krüger, J., Ruvimov, S., Suski, T., Ager, J. W. III, Jones, E., Liliental-Weber, Z., Rubin, M., Weber, E. R., Bremser, M. D. and Davis, R. F., Phys. Rev. B, 54, 17745 (1996).Google Scholar
5. Porowski, S., J. Cryst. Growth, 189/190, 153 (1998).Google Scholar
6. Weyher, J. L., Brown, P. D., Zauner, A. R. A., Muller, S., Boothroyd, C. B., Foord, D. T., Hagemann, P. R., Humphreys, C. J., Larsen, P. K., Grzegory, I. and Porowski, S., J. Cryst. Growth, 204, 419 (1999).Google Scholar
7. Heying, B., Wu, X. H., Keller, S., Li, Y., Kapolnek, D., Keller, B. P., DenBaars, S. P. and Speck, J. S., Appl. Phys. Lett., 68, 643 (1996).Google Scholar
8. Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T. and Mukai, T., Jpn. J. Appl. Phys., 34, L1332 (1995).Google Scholar
9. Fewster, P. F. and Andrew, N. L., J. Appl. Cryst., 28, 451 (1995).Google Scholar
10. Kirchner, V., Heinke, H., Hommel, D., Domagala, J. Z. and Leszczynski, M., submitted to Appl. Phys. Lett.Google Scholar
11. Wang, K. and Reeber, R. R., Mat. Res. Soc. Symp. Proc., 482, 863 (1998).Google Scholar