Skip to main content Accessibility help
×
Home

Theoretical Studies of Pt Chemisorption on γ Al2O3.

  • J. J. Low (a1) and D. E. Ellis (a2)

Abstract

Generalized Valence Bond (GVB) and Local Density Functional (LDF) calculations were carried out to explore the influence of electronic structure on the metal-support interaction in Pt/γAl2O3. On the basis of GVB calculations it was found that ethylene can form either di-σ- or π complexes on Pt depending on the oxidation state of the metal. The LDF calculations showed that chemisorbed Pt transfers charge to γ-Al2O3. These results and experimental observations led us to propose a model of the metal-support interaction in which the Pt exists in two oxidation states for reduced Pt/ Al2O3 catalysts.

Copyright

References

Hide All
1. Goddard, W.A. III, Harding, L.B., Annu. Rev. Phys. Chem. 29, 363 (1978).
2. The GVB calculations used a relativistic effective core potential double-ζ basis for Pt (Noel, J.O., Hay, P.J., Inorg. Chem. 21, 14 (1982)), a valence double-ζ basis sets for C, and an unscaled triple-ζ basis for H (T.H. Dunning, Jr., P.J. Hay, In Modern Theoretical Chemistry: Methods of Electronic Structure, edited by H.F. Schaefer III (Plenum, New York, 1977) vol. 3, chapt. 4, pp. 79–127). Geometry optimizations were carried out at the Hatree-Fock level with the Gaussian 82 package (J.S. Binkley, M.J. Frisch, D.J. Defrees, K. Raghavachari, R.A. Whiteside, H.B. Schelgel, E.M. Fuder, J.A. Pople, GAUSSIAN 82, Dept. Of Chem., Carnegie- Mellon University, Pittsburg Pa, 1983). The correlated wavefunctions used to determine bond energies were optimized using the GVB3 multiconfigurational self consistent field program (L.G. Yaffe, W.A. Goddard III, Phys. Rev. A, 13, 1682 (1976)).
3. Herzberg, G., Molecular Spectra and Molecular Structure. III. Electronic Spectra and Electronic Structure, (Van Nostrand Reinhold Comp., New York, 1966) p. 646.
4. Wisner, J.M., Bartczak, T.J., Ibers, J.A., Low, J.J., Goddard, W.A. III, J. Am. Chem. Soc. 108, 347 (1986).
5. Low, J.J., Goddard, W.A. III, J. Am. Chem. Soc. 108, 6115 (1986).
6. Jarvis, J.A.J., Kilbourn, B.T., Owston, P.G., Acta Crystallogr. B 27, 366 (1971).
7. Hay, P.J., Hunt, W.J., Goddard, W.A. III, J. Am. Chem. Soc. 94, 8293 (1972).
8. Steininger, H., Ibach, H., Lehwald, S., Surf. Sci. 117, 685 (1982).
9. Wilson, S.J., J. Solid State Chem. 30, 247 (1979).
10. John, C.S., Alma, N.C.M., Hyas, G.R., Applied Catalysis 6, 341 (1983).
11. Soma, Y., J. Catalysis, 75, 267 (1982); T.P. Beebe, Jr., J.T. Yates, Jr., J. Phys. Chem.91, 254 (1987); P.-K. Wang, C.P. Slichter, J.H. Sinfelt, J. Phys. Chem.89, 3606 (1985)
12. Mohsin, S.H., Trenary, M., Robota, H.J., J. Phys. Chem. Submitted for Publication.

Theoretical Studies of Pt Chemisorption on γ Al2O3.

  • J. J. Low (a1) and D. E. Ellis (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed