Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-12T11:38:31.491Z Has data issue: false hasContentIssue false

The Role of [M+O] Centers (M+– Group IA Ion) in the Activation of Methane on Metal Oxides

Published online by Cambridge University Press:  28 February 2011

J. H. Lunsford
Affiliation:
Department of Chemistry Texas A & M University College Station, Texas 77843
C.-H. Lin
Affiliation:
Department of Chemistry Texas A & M University College Station, Texas 77843
J.-X. Wang
Affiliation:
Department of Chemistry Texas A & M University College Station, Texas 77843
K. D. Campbell
Affiliation:
Department of Chemistry Texas A & M University College Station, Texas 77843
Get access

Abstract

If the ionic radii are compatible, alkali metal ions will substitute for the divalent metal ions in magnesium oxide, calcium oxide and zinc oxide. At high temperatures in the presence of molecular oxygen, centers of the type [M+O] are formed, where MM+– Group IA ion. The O ions in equilibrium with these centers are effective in H” abstraction from CH4, which is the first step in the oxidative dimerization reaction. At reaction temperatures >720°C alkali metal oxides formed on the catalytic surface may themselves become active centers. Alkali metal carbonates also may inhibit the activity of the host oxide and sinter the oxide, thereby eliminating corner sites which result in complete oxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ito, T. and Lunsford, J.H., Nature (London) 314, 721 (1985); T. Ito, J.-X. Wang, C.-H. Lin and J.H. Lunsford, J. Am. Chem. Soc. 107, 5062 (1985).Google Scholar
2. Otsuka, K., Liu, Q., Hatano, M., Morikawa, A., Chem. Lett. 1986, 467.Google Scholar
3. Iwamatsu, E., Moriyama, T., Takasaki, N. and Aika, K., J. Chem. Soc. Chem. Commun. 1987, 19; T. Moriyama, N. Takasaki, E. Iwamatsu and K. Aika, Chem. Lett. 1986, 1165.Google Scholar
4. Matsuura, I., Utsumi, Y., Nakai, M. and Doi, T., Chem. Lett. 1986, 1981.CrossRefGoogle Scholar
5. Zhang, H.-S., Wang, J.-X., Driscoll, D.J. and Lunsford, J.H., submitted to J. Catal.Google Scholar
6. Lin, C.-H., Wang, J.-X. and Lunsford, J.H., J. Catal. (in press).Google Scholar
7. Sofranko, J.A., Leonard, J.J., Jones, C.A., Gaffney, A.M. and Withers, H.P., Petr. Div. Preprints, 32, 763 (1987).Google Scholar
8. Bohme, D.K. and Fehsenfeld, F.C., Can. J. Chem. 47, 2717 (1969).Google Scholar
9. Aika, K. and Lunsford, J.H., J. Phys. Chem. 81, 1393 (1977).CrossRefGoogle Scholar
10. Abraham, M.M., Unruh, W.P. and Chen, Y., Phy. Rev. B 10, 3540 (1974);D.N. Olson, V.M. Orera, Y. Chen and M.M. Abraham, Phy. Rev. B 21, 1258 (1980).Google Scholar
11. Wang, J.-X. and Lunsford, J.H., J. Phys. Chem. 90 5883 (1986).Google Scholar
12. Haber, J., Kosinski, K., Rusiecka, M., Disc. Faraday Soc. 58, 151 (1974).Google Scholar
13. Mehandru, S.P., Anderson, A.B. and Brazdil, J.F., submitted to J. Am. Chem. Soc.Google Scholar
14. Driscoll, D.J., Martir, W., Wang, J.-X. and Lunsford, J.H., J. Am. Chem. Soc. 107, 58 (1985).Google Scholar
15. Campbell, K.D., Ph.D. Dissertation, Texas A&M University, 1987.Google Scholar
16. Lin, C.-H., Ito, T., Wang, J.-X. and Lunsford, J.H., J. Am. Chem. Soc. 109, 4808 (1987).Google Scholar
17. Lin, C.-H., Campbell, K.D., Wang, J.-X. and Lunsford, J.H., J. Phys. Chem. 90, 534 (1986).Google Scholar
18. Wang, J.-X. and Lunsford, J.H., J. Phys. Chem. 90, 3890 (1986).Google Scholar
19. Loginov, A.Y., Topchieva, K.V., Kostikov, S.V., Krush, N.S., Dokl. Akad. Nauk. SSSR 232, 1351 (1977).Google Scholar
20. Otsuka, K., Said, A.A., Jinno, K. and Komatsu, T., Chem. Lett. 1987, 77.Google Scholar
21. Summers, W.R. and Schweikert, E.A., Rev. Sci. Instrum. 57, 692 (1986).CrossRefGoogle Scholar