Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-22T09:13:18.113Z Has data issue: false hasContentIssue false

Photocurrent Spectroscopy Investigations of Mg-Related Defects Levels in p-Type GaN

Published online by Cambridge University Press:  03 September 2012

S. J. Chung
Affiliation:
Semiconductor Physics Research Center and Department of Semiconductor Science and Technology, Chonbuk National University, Chonju 561-756, KOREA
O. H. Cha
Affiliation:
Semiconductor Physics Research Center and Department of Semiconductor Science and Technology, Chonbuk National University, Chonju 561-756, KOREA
H. K. Cho
Affiliation:
Semiconductor Physics Research Center and Department of Semiconductor Science and Technology, Chonbuk National University, Chonju 561-756, KOREA
M. S. Jeong
Affiliation:
Semiconductor Physics Research Center and Department of Semiconductor Science and Technology, Chonbuk National University, Chonju 561-756, KOREA
C-H. Hong
Affiliation:
Semiconductor Physics Research Center and Department of Semiconductor Science and Technology, Chonbuk National University, Chonju 561-756, KOREA
E-K. Suh*
Affiliation:
Semiconductor Physics Research Center and Department of Semiconductor Science and Technology, Chonbuk National University, Chonju 561-756, KOREA
H. J. Lee
Affiliation:
Semiconductor Physics Research Center and Department of Semiconductor Science and Technology, Chonbuk National University, Chonju 561-756, KOREA
*
Author to whom correspondence should be addressed labsek@moak.chonbuk.ac.kr
Get access

Abstract

The defect levels associated with Mg impurity in p-type GaN films were systematically investigated in terms of doping concentration by photocurrent spectroscopy. Mg-doped GaN samples were grown on sapphire substrate by metal organic chemical vapor deposition and annealed in nitrogen atmosphere at 850 for 10 minutes. At room temperature, PC spectra showed two peaks at 3.31 and 3.15 eV associated with acceptor levels formed at 300 and 142 meV above valence band in as grown samples. But, after the thermal annealing, PC spectra exhibited various additional peaks depending on the Mg concentration. In the GaN samples with Mg concentration around 6 7 1017 cm−3, we have observed PC peaks related to Mg at 3.31 as well as 3.02 eV and carbon acceptor at 3.17 eV. For moderately Mg doped GaN samples, i.e., the hole concentration p=3 4 1017 cm−3, additional peak was observed at around 0.9 eV which can be attributed to defects related to Ga vacancy. For relatively low Mg doped samples whose hole concentrations are 1 2 1017 cm−3, additional broad peak was observed at around 1.3 eV. This peak may be related to the yellow band luminescence. As the Mg concentration is increased, the concentration of Ga vacancies can be reduced because Mg occupies the substitutional site of Ga in GaN lattice. When the hole concentration is above 6 7 1017 cm−3, the yellow luminescence and Ga vacancy related peaks disappeared completely.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S, Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. 34, L797(1995).Google Scholar
2. Bakamura, S., Sehoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T.. , HKiyoku, and Sugimoto, H., Jpn. J. Appl. Phys. 35, L74(1996).Google Scholar
3. Lim, B. W., Chen, Q. C., Yang, J. Y., and Khan, M. Y., Appl. Phys. Lett. 68, 3761(1996).Google Scholar
4. Khan, M. A., Chen, Q. C., Sun, C. J., Yang, J. W., Shur, M. S., and Park, H., Appl. Phys.Lett. 68, 514(1996).Google Scholar
5. Oh, Eunsoon, Park, Hyeongsoo, and Park, Yongjo, Appl. Phys. Lett. 72, 70 (1998).Google Scholar
6. Glaser, E. R., Kennedy, T. A., Doverspike, K., Rowland, L. B., Gaskill, D. K., Freitas, J. A. Jr, Khan, M. Asif, Olson, D. T., Kuznia, J. N., and Wickenden, D. K., Phys, Rev. B51, 13326 (1995).Google Scholar
7. Hofmann, D. M., Kovalev, D., Steude, G., Meyer, B. K., Hoffmann, A., Eckey, L., Heitz, R., Detchprom, T., Amano, H., and Akasaki, I., Phys, Rev. B52, 16702 (1995).Google Scholar
8. Freitas, J. A. Jr, Kennedy, T. A., Glaser, E. R., and Carlos, W. E., Solid-State Electronics. 41, 185 (1997).Google Scholar
9. Gotz, W., Johnson, N. M., and Bour, D. P., Appl. Phys. Lett. 68, 3470 (1996).Google Scholar
10. Gotz, W., Johnson, N. M., Street, R. A., Amano, H., and Akasaki, I., Appl. Phys. Lett. 66, 1340 (1995).Google Scholar
11. Wang, C. D., Yu, L. S., Lau, S. S., Yu, E. T., Kim, W., Botchkarev, A. E., and Morkoc, H., Appl. Phys. Lett. 72, 1211 (1998).Google Scholar
12. Hacke, P., and Okushi, H., Appl. Phys. Lett. 71, 524 (1997).Google Scholar
13. Hirsch, Michele T., Wolk, J. A., Walukiewicz, W., and Haller, E. E., Appl. Phys. Lett. 71, 1098 (1997).Google Scholar
14. Qiu, C. H., and Pankove, J. I., Appl. Phys. Lett. 70, 1983 (1997).Google Scholar
15. Li, J. Z., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett. 69, 1474 (1996).Google Scholar
16. Qiu, C. H., Melton, W., Leksono, M. W., Pankove, J. I., Keller, B. P., and DenBaars, S. P., Appl. Phys. Lett. 69, 1282 (1996).Google Scholar
17. Chadi, D. J., Appl. Phys. Lett. 71, 2970 (1997).Google Scholar
18. Neugebauer, Jorg, and Walle, Chris G. Van de, Appl. Phys. Lett. 69, 503 (1996).Google Scholar
19. Gotz, W., Johnson, N. M., and Bour, D. P., MvCluskey, M. D. and Haller, E. E., Appl. Phys. Lett. 69, 3725(1996).Google Scholar
20. Duan, J. Q., Zhang, B. R., Zhang, Y. X., Wang, L. P., and Qin, G. G., Zhang, G. Y., Tong, Y. Z., Jin, S. X., and Yang, Z. J., Zhangand, X. Xu, Z. H., J. Appl. Phys. 82, 5745(1997).Google Scholar
21. Molnar, R. J., Moustakas, T. D., Bull. Am. Phys. Soc, 38. 445(1993)Google Scholar
22. Tanaka, T., watanabe, A., Amano, H., Kobayashi, Y., Akasaki, I., Yamazaki, S., Koike, M., Appl. Phys. Lett. 65, 593(1994).Google Scholar
23. Kim, W., Salvador, A., Botchkarev, A. E., Aktas, O., Mohammad, S. N., Morkoc, H., Appl. Phys. Lett. 69, 559(1996).Google Scholar
24. Gotz, W., Johnson, N. M., Walker, J., Bour, D. P., Street, R. A., Appl. Phys. Lett. 68, 667(1996).Google Scholar
25. Nakayama, H., Hacke, P., Khan, M. P. H., Detchprohm, T., Hiramatsu, K., Sawaki, N., Jpn. J. Appl. Phys. 35, L282(1996).Google Scholar
26. Pearton, S. J., Abernathy, C. R., and Ren, F., Electron. Mater. 30, 527(1994).Google Scholar
27. Fisher, S., Wetzel, C., Haller, E. E., and Meyer, B. K., Appl. Phys. Lett. 67, 1298(1995).Google Scholar
28. Mao, H. B., Kim, H. G., Park, S. J., Huang, X. L., Chung, S. J., and Suh, E.-K., unpublished.Google Scholar
29. Reddy, C. V., Balakrishnan, K., Okumura, H., and Yoshida, S., Appl. Phys. Lett. 73, 244(1998).Google Scholar
30. Neugebauer, J. and Walle, C. G. Van de, Appl. Phys. Lett. 69, 503(1996).Google Scholar
31. Chen, H. M., Chen, Y. F., Lee, M. C., and Feng, M. S., Phys. Rev. B56, 6942(1997).Google Scholar