Skip to main content Accessibility help

Photocurrent Spectroscopy Investigations of Mg-Related Defects Levels in p-Type GaN

  • S. J. Chung (a1), O. H. Cha (a1), H. K. Cho (a1), M. S. Jeong (a1), C-H. Hong (a1), E-K. Suh (a1) and H. J. Lee (a1)...


The defect levels associated with Mg impurity in p-type GaN films were systematically investigated in terms of doping concentration by photocurrent spectroscopy. Mg-doped GaN samples were grown on sapphire substrate by metal organic chemical vapor deposition and annealed in nitrogen atmosphere at 850 for 10 minutes. At room temperature, PC spectra showed two peaks at 3.31 and 3.15 eV associated with acceptor levels formed at 300 and 142 meV above valence band in as grown samples. But, after the thermal annealing, PC spectra exhibited various additional peaks depending on the Mg concentration. In the GaN samples with Mg concentration around 6 7 1017 cm−3, we have observed PC peaks related to Mg at 3.31 as well as 3.02 eV and carbon acceptor at 3.17 eV. For moderately Mg doped GaN samples, i.e., the hole concentration p=3 4 1017 cm−3, additional peak was observed at around 0.9 eV which can be attributed to defects related to Ga vacancy. For relatively low Mg doped samples whose hole concentrations are 1 2 1017 cm−3, additional broad peak was observed at around 1.3 eV. This peak may be related to the yellow band luminescence. As the Mg concentration is increased, the concentration of Ga vacancies can be reduced because Mg occupies the substitutional site of Ga in GaN lattice. When the hole concentration is above 6 7 1017 cm−3, the yellow luminescence and Ga vacancy related peaks disappeared completely.


Corresponding author

Author to whom correspondence should be addressed


Hide All
1. Nakamura, S, Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. 34, L797(1995).
2. Bakamura, S., Sehoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T.. , HKiyoku, and Sugimoto, H., Jpn. J. Appl. Phys. 35, L74(1996).
3. Lim, B. W., Chen, Q. C., Yang, J. Y., and Khan, M. Y., Appl. Phys. Lett. 68, 3761(1996).
4. Khan, M. A., Chen, Q. C., Sun, C. J., Yang, J. W., Shur, M. S., and Park, H., Appl. Phys.Lett. 68, 514(1996).
5. Oh, Eunsoon, Park, Hyeongsoo, and Park, Yongjo, Appl. Phys. Lett. 72, 70 (1998).
6. Glaser, E. R., Kennedy, T. A., Doverspike, K., Rowland, L. B., Gaskill, D. K., Freitas, J. A. Jr, Khan, M. Asif, Olson, D. T., Kuznia, J. N., and Wickenden, D. K., Phys, Rev. B51, 13326 (1995).
7. Hofmann, D. M., Kovalev, D., Steude, G., Meyer, B. K., Hoffmann, A., Eckey, L., Heitz, R., Detchprom, T., Amano, H., and Akasaki, I., Phys, Rev. B52, 16702 (1995).
8. Freitas, J. A. Jr, Kennedy, T. A., Glaser, E. R., and Carlos, W. E., Solid-State Electronics. 41, 185 (1997).
9. Gotz, W., Johnson, N. M., and Bour, D. P., Appl. Phys. Lett. 68, 3470 (1996).
10. Gotz, W., Johnson, N. M., Street, R. A., Amano, H., and Akasaki, I., Appl. Phys. Lett. 66, 1340 (1995).
11. Wang, C. D., Yu, L. S., Lau, S. S., Yu, E. T., Kim, W., Botchkarev, A. E., and Morkoc, H., Appl. Phys. Lett. 72, 1211 (1998).
12. Hacke, P., and Okushi, H., Appl. Phys. Lett. 71, 524 (1997).
13. Hirsch, Michele T., Wolk, J. A., Walukiewicz, W., and Haller, E. E., Appl. Phys. Lett. 71, 1098 (1997).
14. Qiu, C. H., and Pankove, J. I., Appl. Phys. Lett. 70, 1983 (1997).
15. Li, J. Z., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett. 69, 1474 (1996).
16. Qiu, C. H., Melton, W., Leksono, M. W., Pankove, J. I., Keller, B. P., and DenBaars, S. P., Appl. Phys. Lett. 69, 1282 (1996).
17. Chadi, D. J., Appl. Phys. Lett. 71, 2970 (1997).
18. Neugebauer, Jorg, and Walle, Chris G. Van de, Appl. Phys. Lett. 69, 503 (1996).
19. Gotz, W., Johnson, N. M., and Bour, D. P., MvCluskey, M. D. and Haller, E. E., Appl. Phys. Lett. 69, 3725(1996).
20. Duan, J. Q., Zhang, B. R., Zhang, Y. X., Wang, L. P., and Qin, G. G., Zhang, G. Y., Tong, Y. Z., Jin, S. X., and Yang, Z. J., Zhangand, X. Xu, Z. H., J. Appl. Phys. 82, 5745(1997).
21. Molnar, R. J., Moustakas, T. D., Bull. Am. Phys. Soc, 38. 445(1993)
22. Tanaka, T., watanabe, A., Amano, H., Kobayashi, Y., Akasaki, I., Yamazaki, S., Koike, M., Appl. Phys. Lett. 65, 593(1994).
23. Kim, W., Salvador, A., Botchkarev, A. E., Aktas, O., Mohammad, S. N., Morkoc, H., Appl. Phys. Lett. 69, 559(1996).
24. Gotz, W., Johnson, N. M., Walker, J., Bour, D. P., Street, R. A., Appl. Phys. Lett. 68, 667(1996).
25. Nakayama, H., Hacke, P., Khan, M. P. H., Detchprohm, T., Hiramatsu, K., Sawaki, N., Jpn. J. Appl. Phys. 35, L282(1996).
26. Pearton, S. J., Abernathy, C. R., and Ren, F., Electron. Mater. 30, 527(1994).
27. Fisher, S., Wetzel, C., Haller, E. E., and Meyer, B. K., Appl. Phys. Lett. 67, 1298(1995).
28. Mao, H. B., Kim, H. G., Park, S. J., Huang, X. L., Chung, S. J., and Suh, E.-K., unpublished.
29. Reddy, C. V., Balakrishnan, K., Okumura, H., and Yoshida, S., Appl. Phys. Lett. 73, 244(1998).
30. Neugebauer, J. and Walle, C. G. Van de, Appl. Phys. Lett. 69, 503(1996).
31. Chen, H. M., Chen, Y. F., Lee, M. C., and Feng, M. S., Phys. Rev. B56, 6942(1997).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed