Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T11:33:45.359Z Has data issue: false hasContentIssue false

On the Propagation of Twin-Fault-Induced Stress in Platelet Fau-Framework Zeolites

Published online by Cambridge University Press:  28 February 2011

M. M. J. Treacy
Affiliation:
Exxon Research and Engineering Company, Clinton Township, Annandale, NJ 08801
J. M. Newsam
Affiliation:
Exxon Research and Engineering Company, Clinton Township, Annandale, NJ 08801
D. E. W. Vaughan
Affiliation:
Exxon Research and Engineering Company, Clinton Township, Annandale, NJ 08801
R. A. Beyerlein
Affiliation:
Exxon Research and Engineering Company, Clinton Township, Annandale, NJ 08801
S. B. Rice
Affiliation:
Exxon Research and Engineering Company, Clinton Township, Annandale, NJ 08801
C. B. De Gruyter
Affiliation:
Exxon Chemical Holland, Botlekweg 121, PO Box 7225, 3000 HE, Rotterdam, The Netherlands
Get access

Abstract

A model describing the propagation of a rhombohedral distortion in platelet CSZ–1 zeolites is presented. It is proposed that internal stress gradients grown into CSZ–1 platelets at synthesis are responsible for this distortion of the cubic FAU framework, where the spacings of 111 planes parallel to the platelet surfaces are elongated relative to the {111} planes. The presence of inhomogeneities is suggested by the presence of thin bands of twin faults which are invariably observed near the central layers of each platelet. Elastic modelling confirms that the effects of any stress associated with such twin faults will be most pronounced in the thinnest platelets, where the effects of elastic relaxation are minimal, and where the width of the fault zone relative to the platelet thickness is maximal. Platelet CSZ–3 and Y-type zeolites, which are considerably thicker, are therefore not expected to show significant rhombohedral distortion despite the presence of similar twin fault bands.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meier, W. M. and Olson, D. H., Atlas of Zeolite Structure Types, (Structure Commission of the International Zeolite Association; available from Polycrystal Book Service, Pittsburgh PA, 1978. Second edition in preparation, 1987)Google Scholar
2. Smith, J. V., Chem. Rev. in press, 1988.Google Scholar
3. Breck, D. W., Zeolite Molecular Sieves: Structure, Chemistry and Use (Wiley and Sons, London) 1974 (reprinted R. E. Krieger, Malabar FL, 1984).Google Scholar
4. Barrer, R. M., Hydrothermal Chemistry of Zeolites (Academic Press, London) 1982.Google Scholar
5 Thomas, J. M., Proc. Eighth. Int. Congr. Catalysis Vol. I (Verlag-Chemie) 31, 1984.Google Scholar
6. Treacy, M. M. J., Newsam, J. M., Beyerlein, R. A., Leonowicz, M. E. and Vaughan, D. E. W., J. Chem. Soc., Chem. Commun., 1986, 1211.Google Scholar
7. Treacy, M. M. J., Newsam, J. M., Vaughan, D. E. W., Beyerlein, R. A., and Rice, S. B., in Proc. 1987 Analytical Electron Microscopy Workshop, San Fransisco CA (San Francisco Press, CA) in press, 1987.Google Scholar
8. Smith, J. V., Molecular Sieve Zeolites - I, edited by Gould, R. F. (American Chemical Society; Washington, DC) Adv. Chem. Ser. No. 101, 1976, 109.Google Scholar
9. Mortier, W. J., Compilation of Extra-framework Sites in Zeolites, (Structure Commission of the International Zeolite Association; Butterworth, Guildford UK), 1982.Google Scholar
10. Vaughan, D.E.W. and Barrett, M. G., U.S. Pat. 4,333,859, 1982.Google Scholar
11. Barrett, M. G. and Vaughan, D. E. W., U.S. Pat., 4,309,313, 1982.Google Scholar
12. Beyerlein, R. A., Newsam, J. M., Melchior, M. T. and Malone, H., J. Phys. Chem., accepted for publication, 1987.Google Scholar
13. Thomas, J. M., Audier, M. and Klinowski, J., J. Chem. Soc., Chem. Commun., 1981,1221.Google Scholar
14. Audier, M., Thomas, J. M., Klinowski, J., Jefferson, D. A. and Bursill, L. A., J. Phys. Chem., 86,1982, 581.Google Scholar
15. Thomas, J. M., Ramdas, S., Millward, G. R., Klinowski, J., Audier, M., Gonzalez-Calbet, J. and Fyfe, C. A., J. Solid State Chem., 45, 1982, 368.Google Scholar
16 Kokotailo, G. T. and Ciric, J., Molecular Sieve Zeolites - I., edited by Gould, R. F. (American Chemical Society; Washington, DC) Adv. Chem. Ser. No. 101, 1976, 109.Google Scholar
17. Moore, P. B. and Smith, J. V., Mineralog. Mag., 35, 1008, 1964.Google Scholar
18. Breck, D. W., reference 3, pp 56–58, 1974.Google Scholar
19. Millward, G. R., Thomas, J. M., Ramdas, S. and Barlow, M. T., Proceedings of 6th International Zeolite Conference, edited by Olson, D. and Bisio, A. (Butterworths, Surrey) 1984, 793.Google Scholar
20. Brindley, G. W., in X-Ray Structures of Clay Minerals and their X-Ray Identification, Edited by Brindley, G. W. and Brown, G., Min. Soc. (London), ch 2, 1980.Google Scholar
21 Cockayne, D. J. H., Jenkins, M. L. and Ray, I. L. F., Philos. Mag., 24, 1971, 1383.Google Scholar
22. Treacy, M. M. J., Gibson, J.M. and Howie, A., Phil. Mag. A, 51, 1985, 389.Google Scholar
23. Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity, (New York: McGraw-Hill), pp 58262, 1970.Google Scholar
24. Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. and Whelan, M. J., Electron Microscopy of Thin Crystals, (Krieger, New York) (1977), see chapters 8, 9 and 12.Google Scholar