Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T18:49:20.770Z Has data issue: false hasContentIssue false

Homo-Epitaxial Growth on Misoriented GaN Substrates by MOCVD

Published online by Cambridge University Press:  03 September 2012

A.R.A. Zauner
Affiliation:
Research Institute for Materials, University of Nijmegen, Toernooiveld, 6525ED Nijmegen, The Netherlands
J.J. Schermer
Affiliation:
Research Institute for Materials, University of Nijmegen, Toernooiveld, 6525ED Nijmegen, The Netherlands
W.J.P. van Enckevort
Affiliation:
Research Institute for Materials, University of Nijmegen, Toernooiveld, 6525ED Nijmegen, The Netherlands
V. Kirilyuk
Affiliation:
Research Institute for Materials, University of Nijmegen, Toernooiveld, 6525ED Nijmegen, The Netherlands
J.L. Weyher
Affiliation:
Research Institute for Materials, University of Nijmegen, Toernooiveld, 6525ED Nijmegen, The Netherlands High Pressure Research Center, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
I. Grzegory
Affiliation:
High Pressure Research Center, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
P.R. Hageman
Affiliation:
Research Institute for Materials, University of Nijmegen, Toernooiveld, 6525ED Nijmegen, The Netherlands
P.K. Larsen
Affiliation:
Research Institute for Materials, University of Nijmegen, Toernooiveld, 6525ED Nijmegen, The Netherlands
Get access

Abstract

The N-side of GaN single crystals with off-angle orientations of 0°, 2°, and 4° towards the [1010] direction was used as a substrate for homo-epitaxial MOCVD growth. The highest misorientation resulted in a reduction of the density of grown hillocks by almost two orders of magnitude as compared with homo-epitaxial films grown on the exact (0001) surface. The features still found on the 4° misoriented sample after growth can be explained by a model involving the interaction of steps, introduced by the misorientation and the hexagonal hillocks during the growth process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Seelmann-Eggebert, M., Weyher, J.L., Obloh, H., Zimmermann, H., Rar, A., and Porowski, S., Appl. Phys. Lett 71 (1997) 2635 Google Scholar
[2] Ponce, F.A., Bour, D.P., Young, W.T., Saunders, M., and Steeds, J.W., Appl.Phys.Lett. 69 (1996) 337 Google Scholar
[3] Rouvière, J.L., Arlery, M., Niebuhr, R., Bachem, K.H., and Briot, O., Materals Science and Engineering B43 (1997) 161 Google Scholar
[4] Weyher, J.L., Brown, P.D., Zauner, A.R.A., Müller, S., Boothroyd, C.B., Foord, D.T., Hageman, P.R., Humpreys, C.J., Larsen, P.K., Grzegory, I., and Porowski, S., J. Crystal Growth 204 (1999) 419 Google Scholar
[5] Brown, P.D., Weyher, J.L., Boothroyd, C.B., Foord, D.T., Zauner, A.R.A., Hageman, P.R., Larsen, P.K., Bockowski, M., and Humphreys, C.J.. XI MSM Conf. proceedings, 1999, in press.Google Scholar
[6] Weyher, J.L., Müller, S., Grzegory, I., and Porowski, S., J. Crystal Growth 182 (1997) 17 Google Scholar
[7] Schauler, M., Eberhard, F., Kirchner, C., Schwegler, V., Pelzmann, A., Kamp, M., Ebeling, K.J., Bertram, F., Riemann, T., Christen, J., Prystawko, P., Leszczynski, M., Grzegory, I., and Porowski, S., Appl. Phys. Lett. 74 (1999) 1123 Google Scholar
[8] Enckevort, W.J.P. van, Janssen, G., Vollenberg, W., and Giling, L.J., J. Crystal Growth 148 (1995) 365 Google Scholar
[9] Porowski, S. Mater. Science Eng. B44 (1997) 407 Google Scholar
[10] Romano, L.T. and Myers, T.H., Appl. Phys. Lett. 71 (1997) 3486 Google Scholar
[11] Nowak, G., Pakula, K., Grzegory, I., Weyher, J.L., and Porowski, S., Phys. Stat. Sol. (in press).Google Scholar
[12] Hoek, B. Van der, Eerden, J.P. Van der, and Bennema, P., J. Crystal Growth 56 (1982) 108 Google Scholar