Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T13:02:52.145Z Has data issue: false hasContentIssue false

Growth Chemistry of Ultrathin Silicon Nitride and Oxynitride Passivation Layers on Si(100)

Published online by Cambridge University Press:  10 February 2011

A. Kamath
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, Austin, TX 78712
B. Y. Kim
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, Austin, TX 78712
P. M. Blass
Affiliation:
Center for Materials Chemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712
Y. M. Sun
Affiliation:
Center for Materials Chemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712
J. M. White
Affiliation:
Center for Materials Chemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712
D. L. Kwong
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, Austin, TX 78712
Get access

Abstract

We have studied the thermal growth chemistry and bonding structure of three promising ultrathin (5–20Å), nitrogen rich passivation layers on Si(100), namely-Si3N4, NO/Si(100) grown oxynitride and NO annealed SiO2. These films are intended to serve as substrates with excellent diffusion barrier/interface properties during deposition of high- K dielectrics such as Ta2O5, with tSiO2 equivalent <30Å for ULSI applications. In this paper we show that it is possible to form films with a tailored composition and nitrogen profile using techniques that can easily be integrated with existing silicon processing technology. Alternating growth and surface analysis by X-Ray Photoelectron Spectroscopy (XPS) is used to non destructively characterize the growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bhat, M., Kim, J., Yan, J., Yoon, G. W., Han, L. K., and Kwong, D. L., IEEE Electron Device Lett., EDL–15, 421 (1994).10.1109/55.320988CrossRefGoogle Scholar
2. Okada, Y., Tobin, P. J., Reid, K. G., Hegde, R. I., Maiti, B., and Ajuria, S. A., IEEE Trans.Electron Devices, ED–41, 1608 (1994).10.1109/16.310113CrossRefGoogle Scholar
3. Yao, Z.-Q., Harrison, H. B., Dimitrijev, S., and Yeow, Y. T., IEEE Electron Device Lett., 16, 345 (1995).10.1109/55.400733CrossRefGoogle Scholar
4. Kamath, A., Kwong, D. L., Sun, Y. M., Blass, P., Whaley, S., and White, J. M., Appl. Phys. Lett., 70, 63 (1997).10.1063/1.119307CrossRefGoogle Scholar
5. Moslehi, M. M. and Saraswat, K. C., IEEE Trans. Electron Devices, ED–32, 106 (1985).10.1109/T-ED.1985.21920CrossRefGoogle Scholar
6. Rangelov, G., Stober, J., Eisenhut, B., and Fauster, Th., Phys. Rev. B., 44, 1954 (1991).CrossRefGoogle Scholar
7. Bischoff, J. L., Kubler, L., and Bolmont, D., Surf. Sci., 209, 115 (1989).10.1016/0039-6028(89)90062-9CrossRefGoogle Scholar
8. Delfino, M., Fair, J. A., and Salimian, S., Appl. Phys. Lett., 60, 341 (1992).10.1063/1.106651CrossRefGoogle Scholar
9. Ando, K., Ishitani, A., and Hamano, K., Appl. Phys. Lett., 59, 1081 (1991).10.1063/1.106350CrossRefGoogle Scholar
10. Grunthaner, F. J., Grunthaner, P. J., Vasquez, R. P., Lewis, B. F., Maserjian, J., and Madhukar, A., J. Vac. Sci. Technol., 16, 1443 (1979).10.1116/1.570218CrossRefGoogle Scholar
11. Avouris, P., Boszo, F., and Hamers, R. J., J. Vac. Sci. Technol. B, 5, 1387 (1987).CrossRefGoogle Scholar
12. Tang, H. T., Lennard, W. N., Zhang, C. S., Griffiths, K., Li, B., Feldman, L. C., and Green, M. L., J. Appl. Phys., 80, 1816 (1996).10.1063/1.362993CrossRefGoogle Scholar
13. Bhat, M., Han, L. K., Wristers, D., Yan, J., Kwong, D. L., and Fulford, J., Appl. Phys. Lett., 66, 1225 (1995).CrossRefGoogle Scholar
14. Okada, Y., Tobin, P. J., Lakhotia, V., Feil, W. A., Ajuria, S. A., and Hegde, R. I., Appl. Phys. Lett., 63, 194 (1993).10.1063/1.110400CrossRefGoogle Scholar