Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T08:01:54.359Z Has data issue: false hasContentIssue false

Growth and Characterization of Piezoelectrically Enhanced Acceptor-Type AlGaN/GaN Heterostructures

Published online by Cambridge University Press:  03 September 2012

A. Michel
Affiliation:
Dept. Chemical Engineering, North Carolina State University, Raleigh, NC 27695
D. Hanser
Affiliation:
Dept. Materials Science and EngineeringNorth Carolina State University, Raleigh, NC 27695
R.F. Davis
Affiliation:
Dept. Materials Science and EngineeringNorth Carolina State University, Raleigh, NC 27695
D. Qiao
Affiliation:
Dept. Electrical and Computer EngineeringUniversity of California San Diego, LaJolla, CA 92093-0407
S.S. Lau
Affiliation:
Dept. Electrical and Computer EngineeringUniversity of California San Diego, LaJolla, CA 92093-0407
L.S. Yu
Affiliation:
Dept. Electrical and Computer EngineeringUniversity of California San Diego, LaJolla, CA 92093-0407
W. Sun
Affiliation:
Dept. Electrical and Computer EngineeringUniversity of California San Diego, LaJolla, CA 92093-0407
P. Asbeck
Affiliation:
Dept. Electrical and Computer EngineeringUniversity of California San Diego, LaJolla, CA 92093-0407
Get access

Abstract

Acceptor (Mg)-doped AlGaN/GaN heterostructures were grown via MOVPE and compared to similarly doped GaN standard films grown in the same reactor. Chemical analysis of the films, via secondary ion mass spectrometry (SIMS), revealed comparable Mg concentrations of ∼2×1019 atoms/cm3 in all films. The Mg-doped GaN standard sample had a sheet conductance of 7-μS compared to a sheet conductance of 20-μS for an AlGaN/GaN heterostructure. The sheet conductance of the AlGaN/GaN heterostructures was higher due to piezoelectric acceptor doping and modulation doping effects in addition to conventional Mg acceptor doping.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bykhovski, A., Gelmont, B., Shur, M., J. Appl. Phys. 74, 6734 (1993).Google Scholar
2 Asbeck, P. M., Yu, E.T., Lau, S.S., Sullivan, G.J., VanHove, J., Redwing, J.M., Electron. Lett. 33, 1230 (1997).Google Scholar
3 Yu, E. T., Sullivan, G.J., Asbeck, P.M., Wang, C.D., Qiao, D., Lau, S., Appl. Phys. Lett. 71, 2794 (1997).Google Scholar
4 Morkoc, H., Cingolani, R., Lambrecht, W., Gil, B., Jiang, H.-X., Lin, J., Pavlidis, D., Shenai, K., MRS Internet J. Nitride Semicond. Res. 4S1, G1.2 (1999).Google Scholar
5 Han, J., Baca, A.G., Shul, R.J., Willison, C.G., Zhang, L., Ren, F., Zhang, A.P., Dang, G.T., Donovan, S.M., Cao, X.A., Cho, H., Jung, K.B., Abernathy, C.R., Pearton, S.J., Wilson, R.G., Appl. Phys. Lett. 74, 2702 (1999).Google Scholar
6 Nakamura, S., Mukai, T., Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
7 Reboredo, F. A., Pantelides, S.T., MRS Internet J. Nitride Semicond. Res. 4S1, G5.3 (1999).Google Scholar
8 Weeks, W., Bremser, M., Alley, K., Carlson, E., Appl. Phys. Lett. 67, 401 (1995).Google Scholar
9 Griffis, D. P., Loesing, R., Ricks, D.A., Bremser, M.D., Davis, R.F., in Quantitative Analysis of C, O, Si and Mg Impurities in AlGaN, Orlando, FL, 1997 (John Wiley and Sons), p. 201204.Google Scholar
10 Ohba, Y., Hatano, A., J. Cryst. Growth 145, 214 (1994).Google Scholar