Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T06:31:38.342Z Has data issue: false hasContentIssue false

Germanium Layer Exfoliation by Ion-Cut Processes

Published online by Cambridge University Press:  01 February 2011

Reinhart Job
Affiliation:
reinhart.job@fernuni-hagen.de, University of Hagen, Mathematics and Computerscience, Universitaetsstr. 27, (EET), Hagen, D-58084, Germany, +4923319871183, +492331987357
Wolfgang Düngen
Affiliation:
wolfgang.duengen@fernuni-hagen.de, University of Hagen, Department of Mathematics and Computerscience, Universitätsstr. 27, Hagen, D-58084, Germany
Get access

Abstract

(100)–oriented Czochralski germanium (Cz Ge) wafers were implanted with hydrogen at en-ergies up to 100 keV (related to H+) at a doses of D = 4·106 H+/cm2. Post-hydrogen annealing in normal air atmosphere on a hotplate was employed for 10 min at various temperatures between 350 °C and 600 °C to investigate the samples with regard to blistering and layer exfoliation having in mind the Smart-Cut™ technology for GOI structure formation. The generation and evolution of blisters and craters (“exploded” blisters demonstrating layer exfoliation) were investigated in dependence on the annealing temperature by atomic force microscopy and μ-Raman spectroscopy. The latter method points out the appearance of strong tensile stress upon H+ implantation and subsequent annealing. If the tensile stress exceeds about 1.2 GPa layer exfoliation occurs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Taraschi, G., Pitera, A. J., Fitzgerald, E. A., Solid-State Electronics 48, 1297 (2004).Google Scholar
2. Tracy, C. J., Fejes, P., Theodore, N. D., Maniar, P., Johnson, E., Lamm, A. J., Paler, A. M., Malik, I. J., Ong, P., J. Electronic Mater. 33, 886 (2004).Google Scholar
3. Bedell, S. W., Lanford, W. A., J. Appl. Phys. 90, 1138 (2001).Google Scholar
4. Letertre, F., Deguet, C., Richtarch, C., Faure, B., Hartmann, J. M., Chieu, F., Beaumont, A., Dechamp, J., Morales, C., Allibert, F., Perreau, P., Pocas, S., Personnic, S., Lagahe-Blanchard, C., Ghyselen, B., Vaillant, Y. M. Le, , Jalaquier, Kernevez, N., Mazure, C., Mater. Res. Soc. Symp. Proc. 809, 153 (2004).Google Scholar
5. An, X., Huang, R., Zhang, X., Wang, Y., Semicond. Sci. Technol. 20, 1034 (2005).Google Scholar
6. Yu, C.-Y., Lee, C.-Y., Lin, C.-H., Liu, C. W., Appl. Phys. Lett. 89, 101913 (2006).Google Scholar
7. Cerdeira, F., Buchenauer, C. J., Pollak, F. H., Cardona, M., Phys. Rev. B 5, 580 (1972).Google Scholar
8. Heinig, K. H., Schmidt, B., Markwitz, A., Grötzschel, R., Strobel, M., Oswald, S., Nucl.Instrum. Methods Phys. Res. B 148, 969 (1999).Google Scholar
9. Chew, H. G., Zheng, F., Choi, W. K., Chim, W. K., Foo, Y. L., Fitzgerald, E. A., Nanotechnology 18, 065302 (2007).Google Scholar