Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-07T09:29:18.520Z Has data issue: false hasContentIssue false

Characterization of Supported Metal Oxides by Laser Raman Spectroscopy: Supported Vanadium Oxide on Al2O3 and TiO2

Published online by Cambridge University Press:  28 February 2011

Israel E. Wachs
Affiliation:
Zettlemoyer Center for Surface Studies, Departments of Chemical Engineering and Chemistry, Lehigh University, Bethlehem, PA 18015, U.S.A.
Franklin D. Hardcastle
Affiliation:
Zettlemoyer Center for Surface Studies, Departments of Chemical Engineering and Chemistry, Lehigh University, Bethlehem, PA 18015, U.S.A.
Shirley S. Chan
Affiliation:
Photon Technology International, Princeton Corporate Plaza, Suite F, Deer Park Drive, South Brunswick, NJ 08852, U.S.A.
Get access

Abstract

The interaction of supported vanadium oxide with Al2O3 and TiO2 substrates is examined with Raman spectroscopy. The Raman spectra of the supported vanadium oxide reveal that the strong interaction of the vanadium oxide with the Al2O3 and TiO2 supports results in the formation of an atomically dispersed surface vanadium oxide phase as well as supported crystalline V2O5. The relative concentrations of the atomically dispersed surface vanadium oxide and crystalline V2O5 depend on the vanadium oxide loading and the surface area of the oxide support.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Deviney, M.L. and Gland, J.L., eds. “Catalyst Characterization Science,” ACS Symposium Series 288, American Chemical Society, Washington D.C., 1985.Google Scholar
2. Wachs, I.E., Hardcastle, F.D., and Chan, S.S., Spectrosc. 1(8) 30 (1986).Google Scholar
3. Griffith, W.P. and Wickins, T.D., J. Chem. Soc. (A) 1087 (1966).Google Scholar
4. Roozeboom, F., Medema, J., and Gellings, P.G., Z. Phys. Chem. (Frankfurt am Main) 111 215 (1978).Google Scholar
5. Roozeboom, F., Mittlemeijer-Hazeleger, M.C., Moulijn, J.A., Medema, J., de Beer, V.H.J., and Gellings, P.G., J. Phys. Chem. 84 2783 (1980).Google Scholar
6. Chan, S.S., Wachs, I.E., Murrell, L.L., Wang, L., and Hall, W.K., J. Phys. Chem. 88 5831 (1984).CrossRefGoogle Scholar
7. Wachs, I.E., Saleh, R.Y., Chan, S.S., and Chersich, C.C., Appl. Catal. 15 339 (1985).Google Scholar
8. Saleh, R.Y., Wachs, I.E., Chan, S.S., and Chersich, C.C., J. Catal. 98 102 (1986).CrossRefGoogle Scholar
9. Hardcastle, F.D. and Wachs, I.E., unpublished results.Google Scholar
10. Vanhove, D. and Blanchard, M., Bull. Sci. Chim. Fr. 3291 (1971).Google Scholar
11. Grabowski, R., Grzybowska, B., Haber, J., and Slocgnski, J., React. Kinet. Catal. Lett. 2 81 (1975).Google Scholar
12. Bond, G.C., Sarkany, J., and Parfitt, G.D., J. Catal. 57 476 (1979).Google Scholar
13. Murakami, Y., Inomata, M., Miyamoto, A., and Mori, K., in Proceedings. 7th International Congress on Catalysis. Tokyo, 1980, p. 1344. Elsevier, Amsterdam (1981).Google Scholar
14. Bond, G.C. and Konig, P.J., J. Catal. 77 309 (1982).Google Scholar
15. Bond, G.C. and Bruckman, K., Faraday Discuss. 72 235 (1981).Google Scholar
16. Van Hengstum, A.J., Van Ommen, J.G., Bosch, H., and Gellings, P.J., Appl. Catal. 8 369 (1983).Google Scholar
17. Gasior, M., Gasior, I., and Grzybowska, B., Appl. Catal. 10 87 (1984).Google Scholar