Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T16:29:42.300Z Has data issue: false hasContentIssue false

Characteristics of Deep Centers Observed in n-GaN Grown by Reactive Molecular Beam Epitaxy

Published online by Cambridge University Press:  03 September 2012

Z-Q. Fang
Affiliation:
Semiconductor Research Center, Wright State University, Dayton, OH 45435
D. C. Look
Affiliation:
Semiconductor Research Center, Wright State University, Dayton, OH 45435
Wook Kim
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704
H. Morkoç
Affiliation:
Electrical Engineering and Physics Department, Virginia Commonwealth University, P. O. Box 843072, Richmond, Virginia 23284-3072
Get access

Abstract

Deep centers in Si-doped n-GaN samples grown on sapphire by reactive molecular beam epitaxy, using different ammonia flow rates (AFRs), have been studied by deep level transient spectroscopy. In addition to five electron traps, which were also found in n-GaN layers grown by both metalorganic chemical-vapor deposition and hydride vapor-phase epitaxy, two new centers C1 (0.43-0.48 eV) and E1 (0.25 eV) have been observed. C1, whose parameters show strong electric-field effects and anomalous electron capture kinetics, might be associated with dislocations. E1, which is very dependent on the AFR, exhibits an activation energy close to that of a center created by electron irradiation and is believed to be a defect complex involving VN.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mohammand, S. N., Salvador, A. A., and Morkoç, H., Proc. IEEE 83, 1306 (1995).Google Scholar
2. Hacke, P., Detchprohm, T., Hiramatsu, K., Sawaki, N., Tadatomo, K., and Miyake, K., J. Appl. Phys. 76, 304 (1994).Google Scholar
3. Haase, D., Schmid, M., Kurner, W., Dornen, A., Harle, V., Scholz, F., Burkard, M., and Schweizer, H., Appl. Phys. Lett. 69, 2525 (1996).Google Scholar
4. Gotz, W. K., Walker, J., Romano, L. T., Johnson, N. M., and Molnar, R. J., Mater. Res. Soc. Symp. Proc. 449, 525 (1997).Google Scholar
5. Wang, C. D., Yu, L. S., Lau, S. S., Yu, E. T., Kim, W., Botchkarev, A. E., and Morkoç, H., Appl. Phys. Lett. 72, 1211 (1998).Google Scholar
6. Fang, Z-Q., Look, D. C., Kim, W., Fan, Z., Botchkarev, A., and Morkoç, H., Appl. Phys. Lett. 72, 2277 (1998).Google Scholar
7. Fang, Z-Q., Hemsky, J. W., Look, D. C., Mack, M. P., Molnar, R. J., and Via, G. D., Mater. Res. Soc. Symp. Proc. 482, 881 (1998).Google Scholar
8. Hacke, P., Okushi, H., Kuroda, T., Detchprohm, T., Hiramatsu, K., and Sawaki, N., J. Crystal Growth, 189/190, 541 (1998).Google Scholar
9. Kuksenkov, D. V., Temkin, H., Osinsky, A., Gaska, R., and Khan, M. A., Appl. Phys. Lett. 72, 1365 (1998).Google Scholar
10. Eliseev, P. G., Perlin, P., Furioli, J., Sartori, P., Mu, J., and Osinski, M., J. Electron. Mater. 26, 311 (1997).Google Scholar
11. Kveder, V. V., YOsipyan, u. A., Schroter, W., and Zoth, G., Phys. Status Solidi A 72, 701 (1982).Google Scholar
12. Wosinski, T., J. Appl. Phys. 65, 1566 (1989).Google Scholar
13. Figielski, T., Solid State Electron. 21, 1403 (1978).Google Scholar
14. Auret, F. D., Goodman, S.A., Koschnick, F. K., Spaeth, J-M., Beaumont, B., and Gibart, P., Appl. Phys. Lett. 73, 3745 (1998).Google Scholar
15. Look, D. C., Fang, Z-Q., Kim, W., Aktas, O., Botchkarev, A., Salvador, A., and Morkoç, H., Appl. Phys. Lett. 68, 3775 (1996).Google Scholar
16. Look, D. C., Reynolds, D. C., Hemsky, J. W., Sizelove, J. R., Jones, R. L., and Molnar, R. J., Phys. Rev. Lett. 79, 2273 (1997).Google Scholar