Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-04-30T15:04:10.902Z Has data issue: false hasContentIssue false

Simulations of Defect-Interface Interactions in GaN

Published online by Cambridge University Press:  03 September 2012

J. A. Chisholm
Affiliation:
Department of Materials Science and Metallurgy University of Cambridge Pembroke Street Cambridge CB2 3QZ, United Kingdom
P. D. Bristowe
Affiliation:
Department of Materials Science and Metallurgy University of Cambridge Pembroke Street Cambridge CB2 3QZ, United Kingdom
Get access

Abstract

We report on the interaction of native point defects with commonly observed planar defects in GaN. Using a pair potential model we find a positive binding energy for all native defects to the three boundary structures investigated indicating a preference for native defects to form in these interfaces. The binding energy is highest for the Ga interstitial and lowest for vacancies. Interstitials, which are not thought to occur in significant concentrations in bulk GaN, should form in the (11 20) IDB and the (10 10) SMB and consequently alter the electronic structure of these boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Neugebauer, J. and Walle, C. G. Van de, Phys. Rev. B 50, 8067 (1994).Google Scholar
2. Boguslawski, P., Briggs, E. L. and Bernholc, J., Phys. Rev. B 51, 17255 (1995).Google Scholar
3. Neugebauer, J. and Walle, C. Van de, Festkorperprobleme-Advances in Solid State Physics, 35, 25 (1996)Google Scholar
4. Romano, L. T., Northrup, J. E. and O'Keefe, M. A., Appl. Phys. Lett., 69, (16), 2395 (1996).Google Scholar
5. Xin, Y., Brown, P. D., Humphreys, C. J., Cheng, T. S. and Foxon, C. T., Appl. Phys. Lett., 70, (10), 1308 (1997).Google Scholar
6. Ruvimov, S., Liliental-Weber, Z., Washburn, J., Amano, H., Akasaki, I., and Koike, M., MRS Symposium Proceedings, 482, 387 (1998)Google Scholar
7. Pontin, V., Nouet, G. and Ruterana, P., Appl. Phys. Lett., 74, 947 (1999).Google Scholar
8. Northrup, J. E., Neugebauer, J. and Romano, L. T., Phys. Rev. Lett., 77, 103 (1996).Google Scholar
9. Harding, J. H., Rep. Prog. Phys., 53, 1403 (1990).Google Scholar
10. Ewald, P. P., Ann. Phys., 64, 253 (1921).Google Scholar
11. Chisholm, J. A., Lewis, D. W. and Bristowe, P. D., J. Phys. Condensed Mat., 11, L235 (1999).Google Scholar
12. Dick, B. G. and Overhauser, A. W., Phys. Rev., 112, 90 (1958).Google Scholar