Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-12T00:38:44.123Z Has data issue: false hasContentIssue false

Nonlinear Optical Characterization of GaN Layers Grown by MOCVD on Sapphire

Published online by Cambridge University Press:  03 September 2012

Ivan M. Tiginyanu
Affiliation:
Laboratory of Low-Dimensional Semiconductor Structures, Institute of Applied Physics, Technical University of Moldova, 2004 Chisinau, Moldova, tiginyanu@mail.md
Igor V. Kravetsky
Affiliation:
Laboratory of Low-Dimensional Semiconductor Structures, Institute of Applied Physics, Technical University of Moldova, 2004 Chisinau, Moldova
Dimitris Pavlidis
Affiliation:
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, U.S.A
Andreas Eisenbach
Affiliation:
Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, U.S.A
Ralf Hildebrandt
Affiliation:
Laser-Laboratorium Göttingen, Hans-Adolf-Krebs-Weg 1, D-37077 Göttingen, Germany
Gerd Marowsky
Affiliation:
Laser-Laboratorium Göttingen, Hans-Adolf-Krebs-Weg 1, D-37077 Göttingen, Germany
Hans L. Hartnagel
Affiliation:
Institut für Hochfrequenztechnik, Technische Universität Darmstadt, D-64283 Darmstadt, Germany
Get access

Abstract

Optical second and third harmonic generation measurements were carried out on GaN layers grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates. The measured d33 is 33 times the d11 of quartz. The angular dependence of second-harmonic intensity as well as the measured ratios d33/d15= -2.02 and d33/d31 = -2.03 confirm the wurzite structure of the studied GaN layers with the optical c-axis oriented perpendicular to the sample surface. Fine oscillations were observed in the measured second and third harmonic angular dependencies. A simple model based on the interference of the fundamental beam in the sample was used to explain these oscillations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Properties, Processing and Applications of Gallium Nidride and Related Semiconductors, edited by Edgar, J. H., Strite, S., Akasaki, I., Amano, H., and Wetzel, C. (EM 023, 1999), p. 680.Google Scholar
2. Zhang, H. Y., He, X.H., Shih, Y. H., Schurman, M., Feng, Z. C., and Stall, R. A., Appl. Phys. Lett. 69, 2953 (1996).Google Scholar
3. Miragliotta, J., Wickenden, D. K., Kistenmacher, T. J., and Bryden, W. A., J. Opt.Soc.Am. B 10, 1447 (1993).Google Scholar
4. Angerer, W. E., Yang, N., Yodh, A. G., Khan, M. A., and Sun, C. J., Phys. Rev.B 59, 2932 (1999).Google Scholar
5. Miragliotta, J., and Wickenden, D. K., Phys. Rev. B 50, 14960 (1994).Google Scholar
6. Yariv, A. and Yeh, P., Optical Waves in Crystals(Wiley, New York, 1984).Google Scholar
7. Levine, B. F., Phys. Rev. B 7, 2600 (1973).Google Scholar
8. Hughes, J. L., Wang, Y., and Sipe, J. E.,Phys. Rev. B 55, 13630 (1997).Google Scholar
9. Ishidate, T., Inoue, K., and Aoki, M., Jap. J. Appl. Phys. 19, 1641 (1980).Google Scholar
10. Jerphagon, J. and Kurtz, S. K., J. Appl. Phys. 41, 1667 (1970).Google Scholar
11. Herman, W. N. and Hayden, L. M.,J. Opt. Soc.Am. B 12, 416 (1995).Google Scholar
12. Born, M. and Wolf, E., Principles of Optics (Pergamon, 1964), pp. 288353.Google Scholar
13. Handbook of Laser Science and Technology, edited Weber, M. J. (CRC Press, Inc. Boca Raton, FL, 1986), p. 80.Google Scholar