Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-09-02T00:52:43.787Z Has data issue: false hasContentIssue false

Electrical Characterization of Ultra-Thin Oxides Grown on Silicon Surfaces Cleaned in Ultra-High Vacuum

Published online by Cambridge University Press:  10 February 2011

C. L. Petersen
Affiliation:
Mikroelektronik Centret (MIC), The Technical University of Denmark, Bldg. 345 East, DK-2800 Lyngby, Denmark clp@mic.dtu.dk
F. Grey
Affiliation:
Mikroelektronik Centret (MIC), The Technical University of Denmark, Bldg. 345 East, DK-2800 Lyngby, Denmark
Get access

Abstract

We have investigated the oxidation of clean reconstructed silicon surfaces in-situ using a fourpoint probe technique. The measured conductance variations, on Si(111) and Si(100) surfaces as a function of oxygen exposure are markedly different. On Si(100) surfaces, the conductance displays a rapid fall during the first 100 L exposure to O2, followed by a slower steady decrease at higher oxygen exposures. This behavior is similar for both n-type arid p-type silicon. The conductance of Si(111) surfaces increases significantly at the onset of the oxidation. This conductance increase is found on both n-type and p-type Si(111) samples. We interpret this as being due to the molecular precursor which is known to form in the peroxy bridge position.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dujardin, G., Mayne, A., Comtet, G., Hellner, L., Jamet, M., Goff, E. Le, and Millet, P., Phys. Rev. Lett. 76, 3782 (1996).10.1103/PhysRevLett.76.3782CrossRefGoogle Scholar
2. Martel, R., Avouris, Ph., and Lyo, I.-W., Science 272, 385 (1996).10.1126/science.272.5260.385CrossRefGoogle Scholar
3. Hattori, T., Crit. Rev. Solid St. Mat. Sci. 20, 339 (1995).CrossRefGoogle Scholar
4. Engel, T., Surf. Sci. Rep. 18, 91 (1993).CrossRefGoogle Scholar
5. Wormeester, H., Keim, E. G., and Silfhout, A. van, Surf. Sci 271, 340 (1992).CrossRefGoogle Scholar
6. Jiang, C.-S., Hasegawa, S., and Ino, S., Phys. Rev. B 54, 10389 (1996).10.1103/PhysRevB.54.10389CrossRefGoogle Scholar
7. Jiang, C.-S., Tong, X., Hasegawa, S., and Ino, S., Surf. Sci., in pressGoogle Scholar
8. Hasegawa, S., Tong, X., Jiang, C.-S., Nakajima, Y., and Nagao, T., Surf. Sci., in press.Google Scholar
9. Petersen, C. L., Grey, F., and Aono, M., Surf. Sci., in press.Google Scholar
10. Smits, F. M., Bell System Technol. J. 37, 711 (1958).CrossRefGoogle Scholar
11. Kingston, R. H., and Neustadter, S. F., J. Appl. Phys. 26, 718 (1955).10.1063/1.1722077CrossRefGoogle Scholar
12. Monch, W., Koke, P., and Krueger, S., J. Vac. Sci. Technol. 19, 313 (1981).CrossRefGoogle Scholar
13. Demuth, J. E., Thompson, W. J., DiNardo, N. J., and Imbihl, R., Phys. Rev. Lett. 56, 1408 (1986).10.1103/PhysRevLett.56.1408CrossRefGoogle Scholar
14. D'Evelyn, M. P., Nelson, M. M., and Engel, T., Surf. Sci. 186,75 (1987).CrossRefGoogle Scholar
15. Gupta, P., Mak, C. H., Coon, P. A., and George, S. M., Phys. Rev. B 40, 7739 (1989).CrossRefGoogle Scholar
16. Cahill, D. G. and Avouris, Ph., Appl. Phys. Lett. 60, 326 (1992).10.1063/1.106667CrossRefGoogle Scholar
17. Hofer, U., Morgen, P. and Wurth, W., Phys. Rev. B 40, 1130 (1989).10.1103/PhysRevB.40.1130CrossRefGoogle Scholar
18. Silvestre, C. and Shayegan, M., Solid St. Commun. 77, 735 (1991).CrossRefGoogle Scholar