Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T21:49:06.014Z Has data issue: false hasContentIssue false

AB Initio Pseudopotential Calculations of Dopant Diffusion in SI

Published online by Cambridge University Press:  15 February 2011

Jing Zhu*
Affiliation:
zhul@llnl.govLawrence Livermore National Laboratory, P.O. Box 808, L-412, Livermore, CA 94551
Get access

Abstract

The ab initio pseudopotential method is used to study transient-enhanced-diffusion (TED) related processes. The electronic degrees of freedom are included explicitly, together with the fully self-consistent treatment of the electron charge density. A large supercell and a fine k-point mesh are used to ensure numerical convergence. Such method has been demonstrated to give quantitative description of defect energetics. We will show that boron diffusion is significantly enhanced in the presence of the Si interstitial due to the substantial lowering of the migrational barrier through a kick-out mechanism. The resulting mobile boron can also be trapped by another substitutional boron, forming an immobile and electrically inactive two-boron pair. Similarly, carbon diffusion is also enhanced significantly due to the pairing with Si interstitiels. However, carbon binds to Si interstitials much more strongly than boron does, taking away most Si interstitials from boron at sufficiently large carbon concentration, which causes the suppression of the boron TED. We will also show that Fermi level effect plays an important role in both Si intersititial and boron diffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

For a review, please see Fahey, P. M., Griffin, P. B., and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
2. Mitchel, A. E., Nucl. Instr. Meth. B 37/38, 379 (1989).Google Scholar
3. Stolk, P. A., Eaglesham, D. J., Gossmann, H. J., and Poate, J. M., Appl. Phys. Lett. 66, 1370 (1995).Google Scholar
4. Gilmer, G. H. et al., to be published in this proceeding.Google Scholar
5. Caturla, M. et al., to be published in this proceeding.Google Scholar
6. Nichols, C. S., Van de Walle, C. G., and Pantelides, S. T., Phys. Rev. Lett. 62, 1049 (1989); Phys. Rev. B 40, 5484 (1989)Google Scholar
7. Tarnow, E., Europhys. Lett., 16, 449 (1991);Google Scholar
Tarnow, E., J. Phys.: Condens. Matter 4 5405 (1992)Google Scholar
8. Capaz, R. B., Dal Pino, A. Jr, and Joannopoulos, J. D., Phys. Rev. B 50, 7439 (1994)Google Scholar
9. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).Google Scholar
10. Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
11. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).Google Scholar
12. Kleinman, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
13. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
14. Kohn, and Sham, , Phys. Rev. 140, A 1133 (1965).Google Scholar
15. Zhu, J., Diaz de la Rubia, T., Yang, L. H., Mailhiot, C., and Gilmer, G. H., Phys. Rev. B 54, 4741 (1996)Google Scholar
16. Schober, H. R., Phys. Rev. B 39, 13013 (1989).Google Scholar
17. Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., and Fiolhais, C., Phys. Rev. B 46 6671 (1992); 48, 4978 (1993).Google Scholar
18. Tang, M., Colombo, L., Zhu, J., and Diaz de la Rubia, T., Phys. Rev. B, to be published.Google Scholar
19. Gösele, U., Plöβl, A., and Tan, T. Y., in Process Physics and Modeling in Semiconductor Technology, edited by Srinivasan, G. R., Murthy, C. S., and Dunham, S. T. (Electrochemical Society, Pennington, New Jersey, 1996), p. 309.Google Scholar
20. Watkins, G. D., Phys. Rev. B 12, 5824 (1975); G. D. Watkins, private communication. Google Scholar
21. Watkins, G. D. and Brower, K. L., Phys. Rev. Lett. 36, 1329 (1976)Google Scholar
22. Song, L. W. and Watkins, G. D., Phys. Rev. B 42, 5759 (1990).Google Scholar
23. Rollert, F., Stolwijk, N. A., and Mehrer, H., Proc. 15th Int. Conf. on Defects in Semiconductors, Budapest 1988.Google Scholar
24. Song, L. W., Zhan, X. D., Benson, B. W., and Watkins, G. D., Phys. Rev. B 42, 5765 (1990)Google Scholar